Fast and Fair Computation Offloading Management in a Swarm of Drones Using a Rating-Based Federated Learning Approach

Today, unmanned aerial vehicles (UAVs) or drones are increasingly used to enable and support multi-access edge computing (MEC). However, transferring data between nodes in such dynamic networks implies considerable latency and energy consumption, which are significant issues for practical real-time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.113832-113849
Hauptverfasser: Rahbari, Dadmehr, Alam, Muhammad Mahtab, Moullec, Yannick Le, Jenihhin, Maksim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Today, unmanned aerial vehicles (UAVs) or drones are increasingly used to enable and support multi-access edge computing (MEC). However, transferring data between nodes in such dynamic networks implies considerable latency and energy consumption, which are significant issues for practical real-time applications. In this paper, we consider an autonomous swarm of heterogeneous drones. This is a general architecture that can be used for applications that need in-field computation, e.g. real-time object detection in video streams. Collaborative computing in a swarm of drones has the potential to improve resource utilization in a real-time application i.e., each drone can execute computations locally or offload them to other drones. In such an approach, drones need to compete for using each other's resources; therefore, efficient orchestration of the communication and offloading at the swarm level is essential. The main problem investigated in this work is computation offloading between drones in a swarm. To tackle this problem, we propose a novel federated learning (FL)-based fast and fair offloading strategy with a rating method. Our simulation results demonstrate the effectiveness of the proposed strategy over other existing methods and architectures with average improvements of −23% in energy consumption, −15% in latency, +18% in throughput, and +9% in fairness.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3104117