System-Level IEC ESD Failures in High-Voltage DeNMOS-SCR: Physical Insights and Design Guidelines
A unique failure mechanism for International Electrotechnical Commission (IEC) stress through a common-mode (CM) choke is investigated. The presence of a CM choke in the stress path was found to change the current waveform shape that the electrostatic discharge (ESD) protection device experiences on...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2021-09, Vol.68 (9), p.4242-4250 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A unique failure mechanism for International Electrotechnical Commission (IEC) stress through a common-mode (CM) choke is investigated. The presence of a CM choke in the stress path was found to change the current waveform shape that the electrostatic discharge (ESD) protection device experiences on-chip. Minor variations in the stress current waveform shape for specific IEC stress levels are found to cause an unexpected window failure in drain-extended nMOS silicon controlled rectifier (DeNMOS-SCR). The 3-D technology computer-aided (TCAD) simulations are used to understand the device behavior and failure under the peculiar two-pulse-shaped IEC current waveform attributed to the presence of a CM choke. DeNMOS-SCR failure sensitivity to different components of the unique pulse shape is studied in detail. A novel device architecture is proposed to increase the DeNMOS-SCR robustness against the peculiar two pulse stimuli. The proposed DeNMOS-SCR was found to eliminate the window failures against system-level IEC stress through a CM choke in communication pins in automotive ICs. The proposed concept is universal and can be extended to all high-voltage DeNMOS-SCRs. A detailed physical insight is provided for the operation of the engineered structure. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2021.3100810 |