Multilinear Littlewood–Paley–Stein Operators on Non-homogeneous Spaces
Let m ≥ 2 , λ > 1 and define the multilinear Littlewood–Paley–Stein operators by g λ , μ ∗ ( f → ) ( x ) = ( ∬ R + n + 1 ( t t + | x - y | ) m λ | ∫ ( R n ) κ s t ( y , z → ) ∏ i = 1 κ f i ( z i ) d μ ( z 1 ) ⋯ d μ ( z κ ) | 2 d μ ( y ) d t t m + 1 ) 1 / 2 . In this paper, our main aim is to inve...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2021-09, Vol.31 (9), p.9295-9337 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
m
≥
2
,
λ
>
1
and define the multilinear Littlewood–Paley–Stein operators by
g
λ
,
μ
∗
(
f
→
)
(
x
)
=
(
∬
R
+
n
+
1
(
t
t
+
|
x
-
y
|
)
m
λ
|
∫
(
R
n
)
κ
s
t
(
y
,
z
→
)
∏
i
=
1
κ
f
i
(
z
i
)
d
μ
(
z
1
)
⋯
d
μ
(
z
κ
)
|
2
d
μ
(
y
)
d
t
t
m
+
1
)
1
/
2
.
In this paper, our main aim is to investigate the boundedness of
g
λ
,
μ
∗
on non-homogeneous spaces. By means of probabilistic and dyadic techniques, together with non-homogeneous analysis, we show that
g
λ
,
μ
∗
is bounded from
L
p
1
(
μ
)
×
⋯
×
L
p
κ
(
μ
)
to
L
p
(
μ
)
under certain weak type assumptions. The multilinear non-convolution type kernels
s
t
only need to satisfy some weaker conditions than the standard conditions of multilinear Calderón–Zygmund type kernels and the measures
μ
are only assumed to be upper doubling measures (non-doubling). The above results are new even under Lebesgue measures. This was done by considering first a sufficient condition for the strong type boundedness of
g
λ
,
μ
∗
based on an endpoint assumption, and then directly deduce the strong bound on a big piece from the weak type assumptions. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-020-00491-2 |