Performance analysis of cooperative spectrum sensing in composite lognormal-Hoyt fading channel

The Nakagami-q (or Hoyt) fading model is known as an enriched fading model as it can characterize more severity of fading than Rayleigh fading model. In this paper, the performance of cooperative spectrum sensing is evaluated under Hoyt fading channel, along with the effects of co-existence of shado...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless networks 2021-08, Vol.27 (6), p.3811-3825
Hauptverfasser: Shachi, P., Sudhindra, K. R., Suma, M. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3825
container_issue 6
container_start_page 3811
container_title Wireless networks
container_volume 27
creator Shachi, P.
Sudhindra, K. R.
Suma, M. N.
description The Nakagami-q (or Hoyt) fading model is known as an enriched fading model as it can characterize more severity of fading than Rayleigh fading model. In this paper, the performance of cooperative spectrum sensing is evaluated under Hoyt fading channel, along with the effects of co-existence of shadowing considered. The hard-decision fusion rule i.e., m-out-of-N rule is used with the local sensing aided by energy detection. For shadowed fading, we have considered composite lognormal-Hoyt fading channel with varying shadowing parameters. The analytical expression for probability of detection over composite lognormal-Hoyt fading channel is derived in two different forms. Also, the optimal threshold corresponding to minimum probability of error is analysed mathematically. We validate the numerical results obtained for the probability of detection with the Monte-Carlo simulation results under different shadowing conditions. Also, the optimal threshold values obtained through numerical methods using MATLAB are compared with the results of numerical simulations to verify the mathematical analysis. Further, it was noted that the OR-rule (m = 1) emerged as the decision fusion rule that would minimize the probability of error than other fusion rules with m > 1.
doi_str_mv 10.1007/s11276-021-02686-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562652506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562652506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3d88266ced76a88f9efd7619c090446811d3491c0cf229661b1b952b28c8215d3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhRdRsFb_gKeA5-hktptNjlLUCgU96Dmk2aRu2SZrshXaX2_qCt48DPNg3nswX1FcM7hlAPVdYgxrTgFZHi44PZwUE1bVSAWT_DRrQKQApTgvLlLaAIAopZwU6tVGF-JWe2OJ9rrbpzaR4IgJobdRD-2XJam3Zoi7LUnWp9avSevzfduH1A6WdGHtjw0dXYT9QJxujhbzob233WVx5nSX7NXvnhbvjw9v8wVdvjw9z--X1GANAy0bIZBzY5uaayGctC4rJg1ImM24YKwpZ5IZMA5Rcs5WbCUrXKEwAlnVlNPiZuztY_jc2TSoTdjF_E9SWHHkFVbAswtHl4khpWid6mO71XGvGKgjSDWCVBmk-gGpDjlUjqGUzX5t41_1P6lvPXV3cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562652506</pqid></control><display><type>article</type><title>Performance analysis of cooperative spectrum sensing in composite lognormal-Hoyt fading channel</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shachi, P. ; Sudhindra, K. R. ; Suma, M. N.</creator><creatorcontrib>Shachi, P. ; Sudhindra, K. R. ; Suma, M. N.</creatorcontrib><description>The Nakagami-q (or Hoyt) fading model is known as an enriched fading model as it can characterize more severity of fading than Rayleigh fading model. In this paper, the performance of cooperative spectrum sensing is evaluated under Hoyt fading channel, along with the effects of co-existence of shadowing considered. The hard-decision fusion rule i.e., m-out-of-N rule is used with the local sensing aided by energy detection. For shadowed fading, we have considered composite lognormal-Hoyt fading channel with varying shadowing parameters. The analytical expression for probability of detection over composite lognormal-Hoyt fading channel is derived in two different forms. Also, the optimal threshold corresponding to minimum probability of error is analysed mathematically. We validate the numerical results obtained for the probability of detection with the Monte-Carlo simulation results under different shadowing conditions. Also, the optimal threshold values obtained through numerical methods using MATLAB are compared with the results of numerical simulations to verify the mathematical analysis. Further, it was noted that the OR-rule (m = 1) emerged as the decision fusion rule that would minimize the probability of error than other fusion rules with m &gt; 1.</description><identifier>ISSN: 1022-0038</identifier><identifier>EISSN: 1572-8196</identifier><identifier>DOI: 10.1007/s11276-021-02686-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Codes ; Communication ; Communications Engineering ; Computer Communication Networks ; Electrical Engineering ; Energy ; Engineering ; Error analysis ; Fading ; IT in Business ; Mathematical models ; Monte Carlo simulation ; Networks ; Numerical methods ; Original Paper ; Random variables ; Wireless networks</subject><ispartof>Wireless networks, 2021-08, Vol.27 (6), p.3811-3825</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3d88266ced76a88f9efd7619c090446811d3491c0cf229661b1b952b28c8215d3</cites><orcidid>0000-0001-6112-5526 ; 0000-0002-3061-7461 ; 0000-0003-2722-4429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11276-021-02686-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11276-021-02686-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Shachi, P.</creatorcontrib><creatorcontrib>Sudhindra, K. R.</creatorcontrib><creatorcontrib>Suma, M. N.</creatorcontrib><title>Performance analysis of cooperative spectrum sensing in composite lognormal-Hoyt fading channel</title><title>Wireless networks</title><addtitle>Wireless Netw</addtitle><description>The Nakagami-q (or Hoyt) fading model is known as an enriched fading model as it can characterize more severity of fading than Rayleigh fading model. In this paper, the performance of cooperative spectrum sensing is evaluated under Hoyt fading channel, along with the effects of co-existence of shadowing considered. The hard-decision fusion rule i.e., m-out-of-N rule is used with the local sensing aided by energy detection. For shadowed fading, we have considered composite lognormal-Hoyt fading channel with varying shadowing parameters. The analytical expression for probability of detection over composite lognormal-Hoyt fading channel is derived in two different forms. Also, the optimal threshold corresponding to minimum probability of error is analysed mathematically. We validate the numerical results obtained for the probability of detection with the Monte-Carlo simulation results under different shadowing conditions. Also, the optimal threshold values obtained through numerical methods using MATLAB are compared with the results of numerical simulations to verify the mathematical analysis. Further, it was noted that the OR-rule (m = 1) emerged as the decision fusion rule that would minimize the probability of error than other fusion rules with m &gt; 1.</description><subject>Codes</subject><subject>Communication</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Electrical Engineering</subject><subject>Energy</subject><subject>Engineering</subject><subject>Error analysis</subject><subject>Fading</subject><subject>IT in Business</subject><subject>Mathematical models</subject><subject>Monte Carlo simulation</subject><subject>Networks</subject><subject>Numerical methods</subject><subject>Original Paper</subject><subject>Random variables</subject><subject>Wireless networks</subject><issn>1022-0038</issn><issn>1572-8196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFLAzEQhRdRsFb_gKeA5-hktptNjlLUCgU96Dmk2aRu2SZrshXaX2_qCt48DPNg3nswX1FcM7hlAPVdYgxrTgFZHi44PZwUE1bVSAWT_DRrQKQApTgvLlLaAIAopZwU6tVGF-JWe2OJ9rrbpzaR4IgJobdRD-2XJam3Zoi7LUnWp9avSevzfduH1A6WdGHtjw0dXYT9QJxujhbzob233WVx5nSX7NXvnhbvjw9v8wVdvjw9z--X1GANAy0bIZBzY5uaayGctC4rJg1ImM24YKwpZ5IZMA5Rcs5WbCUrXKEwAlnVlNPiZuztY_jc2TSoTdjF_E9SWHHkFVbAswtHl4khpWid6mO71XGvGKgjSDWCVBmk-gGpDjlUjqGUzX5t41_1P6lvPXV3cg</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Shachi, P.</creator><creator>Sudhindra, K. R.</creator><creator>Suma, M. N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6112-5526</orcidid><orcidid>https://orcid.org/0000-0002-3061-7461</orcidid><orcidid>https://orcid.org/0000-0003-2722-4429</orcidid></search><sort><creationdate>20210801</creationdate><title>Performance analysis of cooperative spectrum sensing in composite lognormal-Hoyt fading channel</title><author>Shachi, P. ; Sudhindra, K. R. ; Suma, M. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3d88266ced76a88f9efd7619c090446811d3491c0cf229661b1b952b28c8215d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Codes</topic><topic>Communication</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Electrical Engineering</topic><topic>Energy</topic><topic>Engineering</topic><topic>Error analysis</topic><topic>Fading</topic><topic>IT in Business</topic><topic>Mathematical models</topic><topic>Monte Carlo simulation</topic><topic>Networks</topic><topic>Numerical methods</topic><topic>Original Paper</topic><topic>Random variables</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shachi, P.</creatorcontrib><creatorcontrib>Sudhindra, K. R.</creatorcontrib><creatorcontrib>Suma, M. N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shachi, P.</au><au>Sudhindra, K. R.</au><au>Suma, M. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance analysis of cooperative spectrum sensing in composite lognormal-Hoyt fading channel</atitle><jtitle>Wireless networks</jtitle><stitle>Wireless Netw</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>27</volume><issue>6</issue><spage>3811</spage><epage>3825</epage><pages>3811-3825</pages><issn>1022-0038</issn><eissn>1572-8196</eissn><abstract>The Nakagami-q (or Hoyt) fading model is known as an enriched fading model as it can characterize more severity of fading than Rayleigh fading model. In this paper, the performance of cooperative spectrum sensing is evaluated under Hoyt fading channel, along with the effects of co-existence of shadowing considered. The hard-decision fusion rule i.e., m-out-of-N rule is used with the local sensing aided by energy detection. For shadowed fading, we have considered composite lognormal-Hoyt fading channel with varying shadowing parameters. The analytical expression for probability of detection over composite lognormal-Hoyt fading channel is derived in two different forms. Also, the optimal threshold corresponding to minimum probability of error is analysed mathematically. We validate the numerical results obtained for the probability of detection with the Monte-Carlo simulation results under different shadowing conditions. Also, the optimal threshold values obtained through numerical methods using MATLAB are compared with the results of numerical simulations to verify the mathematical analysis. Further, it was noted that the OR-rule (m = 1) emerged as the decision fusion rule that would minimize the probability of error than other fusion rules with m &gt; 1.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11276-021-02686-z</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6112-5526</orcidid><orcidid>https://orcid.org/0000-0002-3061-7461</orcidid><orcidid>https://orcid.org/0000-0003-2722-4429</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1022-0038
ispartof Wireless networks, 2021-08, Vol.27 (6), p.3811-3825
issn 1022-0038
1572-8196
language eng
recordid cdi_proquest_journals_2562652506
source SpringerLink Journals - AutoHoldings
subjects Codes
Communication
Communications Engineering
Computer Communication Networks
Electrical Engineering
Energy
Engineering
Error analysis
Fading
IT in Business
Mathematical models
Monte Carlo simulation
Networks
Numerical methods
Original Paper
Random variables
Wireless networks
title Performance analysis of cooperative spectrum sensing in composite lognormal-Hoyt fading channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20analysis%20of%20cooperative%20spectrum%20sensing%20in%20composite%20lognormal-Hoyt%20fading%20channel&rft.jtitle=Wireless%20networks&rft.au=Shachi,%20P.&rft.date=2021-08-01&rft.volume=27&rft.issue=6&rft.spage=3811&rft.epage=3825&rft.pages=3811-3825&rft.issn=1022-0038&rft.eissn=1572-8196&rft_id=info:doi/10.1007/s11276-021-02686-z&rft_dat=%3Cproquest_cross%3E2562652506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562652506&rft_id=info:pmid/&rfr_iscdi=true