Alcove Paths and Gelfand–Tsetlin Patterns

In their study of the equivariant K-theory of the generalized flag varieties G / P , where G is a complex semisimple Lie group, and P is a parabolic subgroup of G , Lenart and Postnikov introduced a combinatorial tool, called the alcove path model. It provides a model for the highest weight crystals...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of combinatorics 2021-09, Vol.25 (3), p.645-676
Hauptverfasser: Watanabe, Hideya, Yamamura, Keita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In their study of the equivariant K-theory of the generalized flag varieties G / P , where G is a complex semisimple Lie group, and P is a parabolic subgroup of G , Lenart and Postnikov introduced a combinatorial tool, called the alcove path model. It provides a model for the highest weight crystals with dominant integral highest weights, generalizing the model by semistandard Young tableaux. In this paper, we prove a simple and explicit formula describing the crystal isomorphism between the alcove path model and the Gelfand–Tsetlin pattern model for type A .
ISSN:0218-0006
0219-3094
DOI:10.1007/s00026-021-00544-5