Alcove Paths and Gelfand–Tsetlin Patterns
In their study of the equivariant K-theory of the generalized flag varieties G / P , where G is a complex semisimple Lie group, and P is a parabolic subgroup of G , Lenart and Postnikov introduced a combinatorial tool, called the alcove path model. It provides a model for the highest weight crystals...
Gespeichert in:
Veröffentlicht in: | Annals of combinatorics 2021-09, Vol.25 (3), p.645-676 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In their study of the equivariant K-theory of the generalized flag varieties
G
/
P
, where
G
is a complex semisimple Lie group, and
P
is a parabolic subgroup of
G
, Lenart and Postnikov introduced a combinatorial tool, called the alcove path model. It provides a model for the highest weight crystals with dominant integral highest weights, generalizing the model by semistandard Young tableaux. In this paper, we prove a simple and explicit formula describing the crystal isomorphism between the alcove path model and the Gelfand–Tsetlin pattern model for type
A
. |
---|---|
ISSN: | 0218-0006 0219-3094 |
DOI: | 10.1007/s00026-021-00544-5 |