Rapid Naked-Eye Tracking of On-Cell Phenotype Based on Dual-Aptamer-Weaved Cascade Assembly of Nanostructures

Phenotypic plasticity is an emerging paradigm for providing biological and clinical insights into cancer initiation, progression, and resistance to therapy. However, it is a great challenge to track phenotypic information on live cells with high levels of sensitivity, specificity, and simplicity, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2021-08, Vol.93 (32), p.11159-11166
Hauptverfasser: Shi, Hai, Wang, Mengjiao, Gong, Youjing, Huang, Yue, Ning, Limin, Xiang, Yang, Yin, Yongmei, Li, Genxi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phenotypic plasticity is an emerging paradigm for providing biological and clinical insights into cancer initiation, progression, and resistance to therapy. However, it is a great challenge to track phenotypic information on live cells with high levels of sensitivity, specificity, and simplicity, when a specific cancer-cell subset is being targeted. In this work, we have successfully achieved cascade assembly of nanoparticles on the surface of specific cancer cells by designing a dual-aptamer-weaved molecular AND logic system. Taking advantage of spatial addressability, precise controllability, and targeting recognition of the nanostructure assemblies, we can precisely label the target-cell subset in a large population of similar cells and rapidly obtain phenotypic information in response to the surface changes of captured cancer cells. Without sophisticated instruments, we can know the phenotypic information on HepG2 cells in whole blood with a high level of sensitivity and rapid naked-eye tracking of on-cell phenotype changes of HepG2 cells undergoing epithelial–mesenchymal transition.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.1c01668