Deployment of MIL-88B(Fe)/TiO2 Nanotube-Supported Ti Wires as Reusable Electrochemiluminescence Microelectrodes for Noninvasive Sensing of H2O2 from Single Cancer Cells

As one of the significant intracellular signaling molecules, hydrogen peroxide (H2O2) regulates some vital biological processes. However, it remains a challenge to develop noninvasive electrodes that can be used for sensing trace H2O2 at the cellular level. Here, we evaluated a high-performance soli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2021-08, Vol.93 (32), p.11312-11320
Hauptverfasser: Jian, Xiaoxia, Xu, Jing, Wang, Yiming, Zhao, Chenxi, Gao, Zhida, Song, Yan-Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As one of the significant intracellular signaling molecules, hydrogen peroxide (H2O2) regulates some vital biological processes. However, it remains a challenge to develop noninvasive electrodes that can be used for sensing trace H2O2 at the cellular level. Here, we evaluated a high-performance solid-state electrochemiluminescence (ECL) H2O2 sensor based on MIL-88B­(Fe) nanocrystal-anchored Ti microwires. Semiconducting TiO2 nanotubes (TiNTs) vertically grown around a Ti wire via an anodization technique act as an intrinsic ECL luminophore. By integrating with MIL-88B­(Fe), the synergistic effect of the TiO2 luminophore and the remarkable peroxidase-like activity of MIL-88B­(Fe) enable the resulting H2O2 sensor an ultrahigh sensitivity featuring a minimum detection limit of 0.1 nM (S/N = 3), long-term stability, high durativity, and wide-range linear response to a concentration of up to 10 mM. To demonstrate the concept of a MIL-88B­(Fe)@TiO2 microelectrode for single-cell sensing, the electrode was used to detect intracellular H2O2 in a single cell. Moreover, benefiting from the heterojunction of MIL-88B­(Fe)/TiO2, the microelectrode was found to exhibit excellent photocatalytic activity in the visible-light range, that is, the sensor surface can be self-cleaning after a short visible-light treatment. These advanced sensor characteristics involving easy reusability reveal that the MIL-88B­(Fe)@TiO2 microelectrode is a new platform for cytosensing. This study provides a new strategy to design semiconductor materials with arbitrary shape and size, allowing for profound applications in biomedical and clinical analysis.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.1c02670