Assessment of the Impacts of Climate and LULC Changes on the Water Yield in the Citarum River Basin, West Java Province, Indonesia

Changes in climate and land use land cover (LULC) are important factors that affect water yield (WY). This study explores which factors have more significant impact on changes in WY, spatially and temporally, within the Citarum River Basin Unit (RBU), West Java Province, Indonesia with an area of ±1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2021-04, Vol.13 (7), p.3919
Hauptverfasser: Nahib, Irmadi, Ambarwulan, Wiwin, Rahadiati, Ati, Munajati, Sri Lestari, Prihanto, Yosef, Suryanta, Jaka, Turmudi, Turmudi, Nuswantoro, Anggit Cahyo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Changes in climate and land use land cover (LULC) are important factors that affect water yield (WY). This study explores which factors have more significant impact on changes in WY, spatially and temporally, within the Citarum River Basin Unit (RBU), West Java Province, Indonesia with an area of ±11.317 km2. The climate in the area of Citarum RBU belongs to the Am climate type, which is characterized by the presence of one or more dry months. The objectives of the study were: (1) To estimate a water yield model using integrated valuation of ecosystem services and tradeoffs (InVEST), and (2) to test the sensitivity of water yield (WY) to changes in climate variables (rainfall and evapotranspiration) and in LULC. The integration of remote sensing (RS), geographic information system (GIS), and the integrated valuation of ecosystem services and tradeoffs (InVEST) approach were used in this study. InVEST is a suite of models used to map and value the goods and services from nature that sustain and fulfill human life. The parameters used for determining the WY are LULC, precipitation, average annual potential evapotranspiration, soil depth, and plant available water content (PAWC). The results showed that the WY within the territory of Citarum RBU was 12.17 billion m3/year, with mean WY (MWY) of 935.26 mm/year. The results also show that the magnitude of MWY in Citarum RBU is lower than the results obtained in Lake Rawa Pening Catchment Areas, Semarang Regency and Salatiga City, Central Java (1.137 mm/year) and in the Patuha Mountain region, Bandung Regency, West Java (2.163 mm/year), which have the same climatic conditions. The WY volume decreased from 2006, to 2012, and 2018. Based on the results of the simulation, climatic parameters played a major role affecting WY compared to changes in LULC in the Citarum RBU. This model also shows that the effect of changes in rainfall (14.06–27.53%) is more dominant followed by the effect of evapotranspiration (10.97–23.86%) and LULC (10.29–12.96%). The InVEST model is very effective and robust for estimating WY in Citarum RBU, which was indicated by high coefficient of determination (R2) 0.9942 and the RSME value of 0.70.
ISSN:2071-1050
2071-1050
DOI:10.3390/su13073919