Efficient Energy Management in a Microgrid with Intermittent Renewable Energy and Storage Sources
Substituting a single large power grid into various manageable microgrids is the emerging form for maintaining power systems. A microgrid is usually comprised of small units of renewable energy sources, battery storage, combined heat and power (CHP) plants and most importantly, an energy management...
Gespeichert in:
Veröffentlicht in: | Sustainability 2019-07, Vol.11 (14), p.3839 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Substituting a single large power grid into various manageable microgrids is the emerging form for maintaining power systems. A microgrid is usually comprised of small units of renewable energy sources, battery storage, combined heat and power (CHP) plants and most importantly, an energy management system (EMS). An EMS is responsible for the core functioning of a microgrid, which includes establishing continuous and reliable communication among all distributed generation (DG) units and ensuring well-coordinated activities. This research focuses on improving the performance of EMS. The problem at hand is the optimal scheduling of the generation units and battery storage in a microgrid. Therefore, EMS should ensure that the power is shared among different sources following an imposed scenario to meet the load requirements, while the operational costs of the microgrid are kept as low as possible. This problem is formulated as an optimization problem. To solve this problem, this research proposes an enhanced version of the most valuable player algorithm (MVPA) which is a new metaheuristic optimization algorithm, inspired by actual sporting events. The obtained results are compared with numerous well-known optimization algorithms to validate the efficiency of the proposed EMS. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su11143839 |