Microstructure of B4C/TiC/TiB2 reinforced surface titanium matrix composite produced by laser cladding
Ti+30%B4C/Ni (nickel-coated boron carbide) was used as cladding material and the titanium metal was prepared on the TC4 titanium alloy substrate by using the unmelted particle reinforced and in-situ autogeneous enhancement technology using a-hundred-watt grade fiber laser heat source to produce the...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2020-02, Vol.770 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 770 |
creator | Hu, C L Sun, R L |
description | Ti+30%B4C/Ni (nickel-coated boron carbide) was used as cladding material and the titanium metal was prepared on the TC4 titanium alloy substrate by using the unmelted particle reinforced and in-situ autogeneous enhancement technology using a-hundred-watt grade fiber laser heat source to produce the B4C/TiC/TiB2 composite reinforced coating. We analyzed the phase composition, distribution and microstructure characteristics of the coating. The results show that the multicomponent composite strengthening coating prepared by adding B4C/Ni powder is mainly composed of metal-based α-Ti, unmelted particle-phase B4C, in-situ as-grown TiC, TiB2, TiB, and intermetallic Ti2Ni. Each ceramic particle is reinforced and intertwined, depending on growth. With the addition of 30%B4C/Ni, the average microhardness of the coating was 917.7 HV0.3, the coefficient of friction was stable at 0.19-0.22, and the minimum amount of atmospheric wear was 7.2 mg. The coating had good antifriction and wear resistance. |
doi_str_mv | 10.1088/1757-899X/770/1/012003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2562157283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562157283</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2223-b3ecd112ffb989eebadc8d8286900ca6642eabbca7679b3b713369ad8aad227c3</originalsourceid><addsrcrecordid>eNptkEtLAzEQgIMoWKt_QQJevKybx3aTPdpSH9DiwQreQp6S0m7WJAv6792loggehhmYbx58AFxidIMR5yVmM1bwpnktGUMlLhEmCNEjMPlpHP_UHJ-Cs5S2CNWsqtAEuLXXMaQce537aGFwcF4tyo0fY05gtL51IWprYOqjk9rC7LNsfb-He5mj_4A67LuQfLawi8H0I6o-4U4mG6HeSWN8-3YOTpzcJXvxnafg5W65WTwUq6f7x8XtqvCEEFooarXBmDinGt5Yq6TR3HDC6wYhLeu6IlYqpSWrWaOoYpjSupGGS2kIYZpOwdVh7_DKe29TFtvQx3Y4KcisJnjGCKcDRQ6UD90vgJEYfYpRlRi1icGnwOLgcxi6_mdo_bz8g4nOOPoFZWR3Ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562157283</pqid></control><display><type>article</type><title>Microstructure of B4C/TiC/TiB2 reinforced surface titanium matrix composite produced by laser cladding</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Hu, C L ; Sun, R L</creator><creatorcontrib>Hu, C L ; Sun, R L</creatorcontrib><description>Ti+30%B4C/Ni (nickel-coated boron carbide) was used as cladding material and the titanium metal was prepared on the TC4 titanium alloy substrate by using the unmelted particle reinforced and in-situ autogeneous enhancement technology using a-hundred-watt grade fiber laser heat source to produce the B4C/TiC/TiB2 composite reinforced coating. We analyzed the phase composition, distribution and microstructure characteristics of the coating. The results show that the multicomponent composite strengthening coating prepared by adding B4C/Ni powder is mainly composed of metal-based α-Ti, unmelted particle-phase B4C, in-situ as-grown TiC, TiB2, TiB, and intermetallic Ti2Ni. Each ceramic particle is reinforced and intertwined, depending on growth. With the addition of 30%B4C/Ni, the average microhardness of the coating was 917.7 HV0.3, the coefficient of friction was stable at 0.19-0.22, and the minimum amount of atmospheric wear was 7.2 mg. The coating had good antifriction and wear resistance.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/770/1/012003</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Antifriction ; Boron carbide ; Coefficient of friction ; Fiber lasers ; Laser beam cladding ; Metal matrix composites ; Microhardness ; Microstructure ; Nickel ; Phase composition ; Protective coatings ; Substrates ; Titanium alloys ; Titanium base alloys ; Titanium carbide ; Titanium diboride ; Wear resistance</subject><ispartof>IOP conference series. Materials Science and Engineering, 2020-02, Vol.770 (1)</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/770/1/012003/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,777,781,27905,27906,38849,38871,53821,53848</link.rule.ids></links><search><creatorcontrib>Hu, C L</creatorcontrib><creatorcontrib>Sun, R L</creatorcontrib><title>Microstructure of B4C/TiC/TiB2 reinforced surface titanium matrix composite produced by laser cladding</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>Ti+30%B4C/Ni (nickel-coated boron carbide) was used as cladding material and the titanium metal was prepared on the TC4 titanium alloy substrate by using the unmelted particle reinforced and in-situ autogeneous enhancement technology using a-hundred-watt grade fiber laser heat source to produce the B4C/TiC/TiB2 composite reinforced coating. We analyzed the phase composition, distribution and microstructure characteristics of the coating. The results show that the multicomponent composite strengthening coating prepared by adding B4C/Ni powder is mainly composed of metal-based α-Ti, unmelted particle-phase B4C, in-situ as-grown TiC, TiB2, TiB, and intermetallic Ti2Ni. Each ceramic particle is reinforced and intertwined, depending on growth. With the addition of 30%B4C/Ni, the average microhardness of the coating was 917.7 HV0.3, the coefficient of friction was stable at 0.19-0.22, and the minimum amount of atmospheric wear was 7.2 mg. The coating had good antifriction and wear resistance.</description><subject>Antifriction</subject><subject>Boron carbide</subject><subject>Coefficient of friction</subject><subject>Fiber lasers</subject><subject>Laser beam cladding</subject><subject>Metal matrix composites</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Nickel</subject><subject>Phase composition</subject><subject>Protective coatings</subject><subject>Substrates</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Titanium carbide</subject><subject>Titanium diboride</subject><subject>Wear resistance</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkEtLAzEQgIMoWKt_QQJevKybx3aTPdpSH9DiwQreQp6S0m7WJAv6792loggehhmYbx58AFxidIMR5yVmM1bwpnktGUMlLhEmCNEjMPlpHP_UHJ-Cs5S2CNWsqtAEuLXXMaQce537aGFwcF4tyo0fY05gtL51IWprYOqjk9rC7LNsfb-He5mj_4A67LuQfLawi8H0I6o-4U4mG6HeSWN8-3YOTpzcJXvxnafg5W65WTwUq6f7x8XtqvCEEFooarXBmDinGt5Yq6TR3HDC6wYhLeu6IlYqpSWrWaOoYpjSupGGS2kIYZpOwdVh7_DKe29TFtvQx3Y4KcisJnjGCKcDRQ6UD90vgJEYfYpRlRi1icGnwOLgcxi6_mdo_bz8g4nOOPoFZWR3Ew</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Hu, C L</creator><creator>Sun, R L</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200201</creationdate><title>Microstructure of B4C/TiC/TiB2 reinforced surface titanium matrix composite produced by laser cladding</title><author>Hu, C L ; Sun, R L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2223-b3ecd112ffb989eebadc8d8286900ca6642eabbca7679b3b713369ad8aad227c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antifriction</topic><topic>Boron carbide</topic><topic>Coefficient of friction</topic><topic>Fiber lasers</topic><topic>Laser beam cladding</topic><topic>Metal matrix composites</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Nickel</topic><topic>Phase composition</topic><topic>Protective coatings</topic><topic>Substrates</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Titanium carbide</topic><topic>Titanium diboride</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, C L</creatorcontrib><creatorcontrib>Sun, R L</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, C L</au><au>Sun, R L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure of B4C/TiC/TiB2 reinforced surface titanium matrix composite produced by laser cladding</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>770</volume><issue>1</issue><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Ti+30%B4C/Ni (nickel-coated boron carbide) was used as cladding material and the titanium metal was prepared on the TC4 titanium alloy substrate by using the unmelted particle reinforced and in-situ autogeneous enhancement technology using a-hundred-watt grade fiber laser heat source to produce the B4C/TiC/TiB2 composite reinforced coating. We analyzed the phase composition, distribution and microstructure characteristics of the coating. The results show that the multicomponent composite strengthening coating prepared by adding B4C/Ni powder is mainly composed of metal-based α-Ti, unmelted particle-phase B4C, in-situ as-grown TiC, TiB2, TiB, and intermetallic Ti2Ni. Each ceramic particle is reinforced and intertwined, depending on growth. With the addition of 30%B4C/Ni, the average microhardness of the coating was 917.7 HV0.3, the coefficient of friction was stable at 0.19-0.22, and the minimum amount of atmospheric wear was 7.2 mg. The coating had good antifriction and wear resistance.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/770/1/012003</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2020-02, Vol.770 (1) |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2562157283 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry |
subjects | Antifriction Boron carbide Coefficient of friction Fiber lasers Laser beam cladding Metal matrix composites Microhardness Microstructure Nickel Phase composition Protective coatings Substrates Titanium alloys Titanium base alloys Titanium carbide Titanium diboride Wear resistance |
title | Microstructure of B4C/TiC/TiB2 reinforced surface titanium matrix composite produced by laser cladding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A07%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20of%20B4C/TiC/TiB2%20reinforced%20surface%20titanium%20matrix%20composite%20produced%20by%20laser%20cladding&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Hu,%20C%20L&rft.date=2020-02-01&rft.volume=770&rft.issue=1&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/770/1/012003&rft_dat=%3Cproquest_iop_j%3E2562157283%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562157283&rft_id=info:pmid/&rfr_iscdi=true |