Microstructure of B4C/TiC/TiB2 reinforced surface titanium matrix composite produced by laser cladding

Ti+30%B4C/Ni (nickel-coated boron carbide) was used as cladding material and the titanium metal was prepared on the TC4 titanium alloy substrate by using the unmelted particle reinforced and in-situ autogeneous enhancement technology using a-hundred-watt grade fiber laser heat source to produce the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2020-02, Vol.770 (1)
Hauptverfasser: Hu, C L, Sun, R L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ti+30%B4C/Ni (nickel-coated boron carbide) was used as cladding material and the titanium metal was prepared on the TC4 titanium alloy substrate by using the unmelted particle reinforced and in-situ autogeneous enhancement technology using a-hundred-watt grade fiber laser heat source to produce the B4C/TiC/TiB2 composite reinforced coating. We analyzed the phase composition, distribution and microstructure characteristics of the coating. The results show that the multicomponent composite strengthening coating prepared by adding B4C/Ni powder is mainly composed of metal-based α-Ti, unmelted particle-phase B4C, in-situ as-grown TiC, TiB2, TiB, and intermetallic Ti2Ni. Each ceramic particle is reinforced and intertwined, depending on growth. With the addition of 30%B4C/Ni, the average microhardness of the coating was 917.7 HV0.3, the coefficient of friction was stable at 0.19-0.22, and the minimum amount of atmospheric wear was 7.2 mg. The coating had good antifriction and wear resistance.
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/770/1/012003