Stability-Ranking of Crystalline Ice Polymorphs Using Density-Functional Theory
In this work, we consider low-enthalpy polymorphs of ice, predicted previously using a modified basin-hopping algorithm for crystal-structure prediction with the TIP4P empirical potential at three pressures (0, 4 and 8 kbar). We compare and (re)-rank the reported ice polymorphs in order of energetic...
Gespeichert in:
Veröffentlicht in: | Crystals (Basel) 2020-01, Vol.10 (1), p.40, Article 40 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we consider low-enthalpy polymorphs of ice, predicted previously using a modified basin-hopping algorithm for crystal-structure prediction with the TIP4P empirical potential at three pressures (0, 4 and 8 kbar). We compare and (re)-rank the reported ice polymorphs in order of energetic stability, using high-level quantum-chemical calculations, primarily in the guise of sophisticated Density-Functional Theory (DFT) approaches. In the absence of applied pressure, ice Ih is predicted to be energetically more stable than ice Ic, and TIP4P-predicted results and ranking compare well with the results obtained from DFT calculations. However, perhaps not unexpectedly, the deviation between TIP4P- and DFT-calculated results increases with applied external pressure. |
---|---|
ISSN: | 2073-4352 2073-4352 |
DOI: | 10.3390/cryst10010040 |