Formulation and experimental validation of space-fractional Timoshenko beam model with functionally graded materials effects
In this study, the static bending behaviour of a size-dependent thick beam is considered including FGM (Functionally Graded Materials) effects. The presented theory is a further development and extension of the space-fractional (non-local) Euler–Bernoulli beam model (s-FEBB) to space-fractional Timo...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 2021-09, Vol.68 (3), p.697-708 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, the static bending behaviour of a size-dependent thick beam is considered including FGM (Functionally Graded Materials) effects. The presented theory is a further development and extension of the space-fractional (non-local) Euler–Bernoulli beam model (s-FEBB) to space-fractional Timoshenko beam (s-FTB) one by proper taking into account shear deformation. Furthermore, a detailed parametric study on the influence of length scale and order of fractional continua for different boundary conditions demonstrates, how the non-locality affects the static bending response of the s-FTB model. The differences in results between s-FTB and s-FEBB models are shown as well to indicate when shear deformations need to be considered. Finally, material parameter identification and validation based on the bending of SU-8 polymer microbeams confirm the effectiveness of the presented model. |
---|---|
ISSN: | 0178-7675 1432-0924 |
DOI: | 10.1007/s00466-021-01987-6 |