On statistical learning of simplices: Unmixing problem revisited

We study the sample complexity of learning a high-dimensional simplex from a set of points uniformly sampled from its interior. Learning of simplices is a long studied problem in computer science and has applications in computational biology and remote sensing, mostly under the name of "spectra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2021-06, Vol.49 (3), p.1626
Hauptverfasser: Najafi, Amir, Ilchi, Saeed, Saberi, Amir Hossein, Motahari, Seyed Abolfazl, Khalaj, Babak H., Rabiee, Hamid R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 1626
container_title The Annals of statistics
container_volume 49
creator Najafi, Amir
Ilchi, Saeed
Saberi, Amir Hossein
Motahari, Seyed Abolfazl
Khalaj, Babak H.
Rabiee, Hamid R.
description We study the sample complexity of learning a high-dimensional simplex from a set of points uniformly sampled from its interior. Learning of simplices is a long studied problem in computer science and has applications in computational biology and remote sensing, mostly under the name of "spectral unmixing." We theoretically show that a sufficient sample complexity for reliable learning of a K-dimensional simplex up to a total-variation error of ϵ is O ( K 2 ϵ log K ϵ ) , which yields a substantial improvement over existing bounds. Based on our new theoretical framework, we also propose a heuristic approach for the inference of simplices. Experimental results on synthetic and real-world datasets demonstrate a comparable performance for our method on noiseless samples, while we outperform the state-of-the-art in noisy cases.
doi_str_mv 10.1214/20-AOS2016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561965623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561965623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-6523c238f398a4c47ccef93834c725e62c0265ed7f7bf5a84672f89174c268263</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsXf8GCN2E1eZO8m3iylPoBhT1ozyFNE0nZj5psRf-9W9rTwPAwMwwht4w-MGDiEWg5qz-AMjwjE2CoSqURz8mEUk1LyVFckquct5RSqQWfkOe6K_Jgh5iH6GxTNN6mLnZfRR-KHNtdE53PT8Wqa-Pvwd6lft34tkj-J-Y4-M01uQi2yf7mpFOyell8zt_KZf36Pp8tSwdMDSVK4A64ClwrK5yonPNBc8WFq0B6BEcBpd9UoVoHaZXACoLSrBIOUAHyKbk75o4Lvvc-D2bb71M3VhqQyDRKBD5S90fKpT7n5IPZpdja9GcYNYeHDFBzeoj_AwhDVy0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561965623</pqid></control><display><type>article</type><title>On statistical learning of simplices: Unmixing problem revisited</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Najafi, Amir ; Ilchi, Saeed ; Saberi, Amir Hossein ; Motahari, Seyed Abolfazl ; Khalaj, Babak H. ; Rabiee, Hamid R.</creator><creatorcontrib>Najafi, Amir ; Ilchi, Saeed ; Saberi, Amir Hossein ; Motahari, Seyed Abolfazl ; Khalaj, Babak H. ; Rabiee, Hamid R.</creatorcontrib><description>We study the sample complexity of learning a high-dimensional simplex from a set of points uniformly sampled from its interior. Learning of simplices is a long studied problem in computer science and has applications in computational biology and remote sensing, mostly under the name of "spectral unmixing." We theoretically show that a sufficient sample complexity for reliable learning of a K-dimensional simplex up to a total-variation error of ϵ is O ( K 2 ϵ log K ϵ ) , which yields a substantial improvement over existing bounds. Based on our new theoretical framework, we also propose a heuristic approach for the inference of simplices. Experimental results on synthetic and real-world datasets demonstrate a comparable performance for our method on noiseless samples, while we outperform the state-of-the-art in noisy cases.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/20-AOS2016</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Algorithms ; Complexity ; Computational mathematics ; Heuristic ; Heuristic methods ; Learning ; Remote sensing ; Statistical methods</subject><ispartof>The Annals of statistics, 2021-06, Vol.49 (3), p.1626</ispartof><rights>Copyright Institute of Mathematical Statistics Jun 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-6523c238f398a4c47ccef93834c725e62c0265ed7f7bf5a84672f89174c268263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Najafi, Amir</creatorcontrib><creatorcontrib>Ilchi, Saeed</creatorcontrib><creatorcontrib>Saberi, Amir Hossein</creatorcontrib><creatorcontrib>Motahari, Seyed Abolfazl</creatorcontrib><creatorcontrib>Khalaj, Babak H.</creatorcontrib><creatorcontrib>Rabiee, Hamid R.</creatorcontrib><title>On statistical learning of simplices: Unmixing problem revisited</title><title>The Annals of statistics</title><description>We study the sample complexity of learning a high-dimensional simplex from a set of points uniformly sampled from its interior. Learning of simplices is a long studied problem in computer science and has applications in computational biology and remote sensing, mostly under the name of "spectral unmixing." We theoretically show that a sufficient sample complexity for reliable learning of a K-dimensional simplex up to a total-variation error of ϵ is O ( K 2 ϵ log K ϵ ) , which yields a substantial improvement over existing bounds. Based on our new theoretical framework, we also propose a heuristic approach for the inference of simplices. Experimental results on synthetic and real-world datasets demonstrate a comparable performance for our method on noiseless samples, while we outperform the state-of-the-art in noisy cases.</description><subject>Algorithms</subject><subject>Complexity</subject><subject>Computational mathematics</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Learning</subject><subject>Remote sensing</subject><subject>Statistical methods</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEYhIMoWKsXf8GCN2E1eZO8m3iylPoBhT1ozyFNE0nZj5psRf-9W9rTwPAwMwwht4w-MGDiEWg5qz-AMjwjE2CoSqURz8mEUk1LyVFckquct5RSqQWfkOe6K_Jgh5iH6GxTNN6mLnZfRR-KHNtdE53PT8Wqa-Pvwd6lft34tkj-J-Y4-M01uQi2yf7mpFOyell8zt_KZf36Pp8tSwdMDSVK4A64ClwrK5yonPNBc8WFq0B6BEcBpd9UoVoHaZXACoLSrBIOUAHyKbk75o4Lvvc-D2bb71M3VhqQyDRKBD5S90fKpT7n5IPZpdja9GcYNYeHDFBzeoj_AwhDVy0</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Najafi, Amir</creator><creator>Ilchi, Saeed</creator><creator>Saberi, Amir Hossein</creator><creator>Motahari, Seyed Abolfazl</creator><creator>Khalaj, Babak H.</creator><creator>Rabiee, Hamid R.</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20210601</creationdate><title>On statistical learning of simplices: Unmixing problem revisited</title><author>Najafi, Amir ; Ilchi, Saeed ; Saberi, Amir Hossein ; Motahari, Seyed Abolfazl ; Khalaj, Babak H. ; Rabiee, Hamid R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-6523c238f398a4c47ccef93834c725e62c0265ed7f7bf5a84672f89174c268263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Complexity</topic><topic>Computational mathematics</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Learning</topic><topic>Remote sensing</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Najafi, Amir</creatorcontrib><creatorcontrib>Ilchi, Saeed</creatorcontrib><creatorcontrib>Saberi, Amir Hossein</creatorcontrib><creatorcontrib>Motahari, Seyed Abolfazl</creatorcontrib><creatorcontrib>Khalaj, Babak H.</creatorcontrib><creatorcontrib>Rabiee, Hamid R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Najafi, Amir</au><au>Ilchi, Saeed</au><au>Saberi, Amir Hossein</au><au>Motahari, Seyed Abolfazl</au><au>Khalaj, Babak H.</au><au>Rabiee, Hamid R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On statistical learning of simplices: Unmixing problem revisited</atitle><jtitle>The Annals of statistics</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>49</volume><issue>3</issue><spage>1626</spage><pages>1626-</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>We study the sample complexity of learning a high-dimensional simplex from a set of points uniformly sampled from its interior. Learning of simplices is a long studied problem in computer science and has applications in computational biology and remote sensing, mostly under the name of "spectral unmixing." We theoretically show that a sufficient sample complexity for reliable learning of a K-dimensional simplex up to a total-variation error of ϵ is O ( K 2 ϵ log K ϵ ) , which yields a substantial improvement over existing bounds. Based on our new theoretical framework, we also propose a heuristic approach for the inference of simplices. Experimental results on synthetic and real-world datasets demonstrate a comparable performance for our method on noiseless samples, while we outperform the state-of-the-art in noisy cases.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/20-AOS2016</doi></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2021-06, Vol.49 (3), p.1626
issn 0090-5364
2168-8966
language eng
recordid cdi_proquest_journals_2561965623
source EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects Algorithms
Complexity
Computational mathematics
Heuristic
Heuristic methods
Learning
Remote sensing
Statistical methods
title On statistical learning of simplices: Unmixing problem revisited
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T16%3A14%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20statistical%20learning%20of%20simplices:%20Unmixing%20problem%20revisited&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Najafi,%20Amir&rft.date=2021-06-01&rft.volume=49&rft.issue=3&rft.spage=1626&rft.pages=1626-&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/20-AOS2016&rft_dat=%3Cproquest_cross%3E2561965623%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561965623&rft_id=info:pmid/&rfr_iscdi=true