On statistical learning of simplices: Unmixing problem revisited
We study the sample complexity of learning a high-dimensional simplex from a set of points uniformly sampled from its interior. Learning of simplices is a long studied problem in computer science and has applications in computational biology and remote sensing, mostly under the name of "spectra...
Gespeichert in:
Veröffentlicht in: | The Annals of statistics 2021-06, Vol.49 (3), p.1626 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the sample complexity of learning a high-dimensional simplex from a set of points uniformly sampled from its interior. Learning of simplices is a long studied problem in computer science and has applications in computational biology and remote sensing, mostly under the name of "spectral unmixing." We theoretically show that a sufficient sample complexity for reliable learning of a K-dimensional simplex up to a total-variation error of ϵ is O ( K 2 ϵ log K ϵ ) , which yields a substantial improvement over existing bounds. Based on our new theoretical framework, we also propose a heuristic approach for the inference of simplices. Experimental results on synthetic and real-world datasets demonstrate a comparable performance for our method on noiseless samples, while we outperform the state-of-the-art in noisy cases. |
---|---|
ISSN: | 0090-5364 2168-8966 |
DOI: | 10.1214/20-AOS2016 |