A novel transfer learning approach for the classification of histological images of colorectal cancer

Colorectal cancer (CRC) is the second most diagnosed cancer in the United States. It is identified by histopathological evaluations of microscopic images of the cancerous region, relying on a subjective interpretation. The Colorectal Histology dataset used in this study contains 5000 images, made av...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2021-09, Vol.77 (9), p.9494-9519
Hauptverfasser: Ohata, Elene Firmeza, Chagas, João Victor Souza das, Bezerra, Gabriel Maia, Hassan, Mohammad Mehedi, de Albuquerque, Victor Hugo Costa, Filho, Pedro Pedrosa Rebouças
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Colorectal cancer (CRC) is the second most diagnosed cancer in the United States. It is identified by histopathological evaluations of microscopic images of the cancerous region, relying on a subjective interpretation. The Colorectal Histology dataset used in this study contains 5000 images, made available by the University Medical Center Mannheim. This approach proposes the automatic identification of eight types of tissues found in CRC histopathological evaluation. We apply Transfer Learning from architectures of Convolutional Neural Networks (CNNs). We modify the structures of CNNs to extract features from the images and input them to well-known machine learning methods: Naive Bayes, Multilayer Perceptron, k-Nearest Neighbors, Random Forest, and Support Vector Machine (SVM). We evaluated 108 extractor–classifier combinations. The one that achieved the best results is DenseNet169 with SVM (RBF), reaching an Accuracy of 92.083% and F1-Score of 92.117%. Therefore, our approach is capable of distinguishing tissues found in CRC histopathological evaluation.
ISSN:0920-8542
1573-0484
DOI:10.1007/s11227-020-03575-6