Tailored Mechanical Metamaterials with Programmable Quasi‐Zero‐Stiffness Features for Full‐Band Vibration Isolation

Quasi‐zero‐stiffness (QZS) isolators of high‐static‐low‐dynamic stiffness play an important role in ultra‐low frequency vibration mitigation. While the current designs of QZS mainly exploit the combination of negative‐stiffness corrector and positive‐stiffness element, and only have a single QZS wor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-08, Vol.31 (33), p.n/a
Hauptverfasser: Zhang, Quan, Guo, Dengke, Hu, Gengkai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quasi‐zero‐stiffness (QZS) isolators of high‐static‐low‐dynamic stiffness play an important role in ultra‐low frequency vibration mitigation. While the current designs of QZS mainly exploit the combination of negative‐stiffness corrector and positive‐stiffness element, and only have a single QZS working range, here a class of tailored mechanical metamaterials with programmable QZS features is proposed. These programmed structures contain curved beams with geometries that are specifically designed to enable the prescribed QZS characteristics. When these metamaterials are compressed, the curved beams reach the prescribed QZS working range in sequence, thus enabling tailored stair‐stepping force‐displacement curves with multiple QZS working ranges. Compression tests demonstrate that a vast design space is achieved to program the QZS features of the metamaterials. Further vibration tests confirm the ultra‐low frequency vibration isolation capability of the proposed mechanical metamaterials. The mechanism of QZS stems solely from the structural geometry of the curved beams and is therefore materials‐independent. This design strategy opens a new avenue for innovating compact and scalable QZS isolators with multiple working ranges. A class of tailored mechanical metamaterials, containing many optimally designed curved beams, is proposed. By digitally assembling the basic building blocks that contain two curved beams, programmable quasi‐zero‐stiffness (QZS) features including both the QZS displacement range and QZS payload can be achieved. The obtained QZS can be employed for ultra‐low frequency vibration isolation without sacrificing the loading capacity.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202101428