High‐dimensional robust inference for Cox regression models using desparsified Lasso
We consider high‐dimensional inference for potentially misspecified Cox proportional hazard models based on low‐dimensional results by Lin and Wei (1989). A desparsified Lasso estimator is proposed based on the log partial likelihood function and shown to converge to a pseudo‐true parameter vector....
Gespeichert in:
Veröffentlicht in: | Scandinavian journal of statistics 2021-09, Vol.48 (3), p.1068-1095 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1095 |
---|---|
container_issue | 3 |
container_start_page | 1068 |
container_title | Scandinavian journal of statistics |
container_volume | 48 |
creator | Kong, Shengchun Yu, Zhuqing Zhang, Xianyang Cheng, Guang |
description | We consider high‐dimensional inference for potentially misspecified Cox proportional hazard models based on low‐dimensional results by Lin and Wei (1989). A desparsified Lasso estimator is proposed based on the log partial likelihood function and shown to converge to a pseudo‐true parameter vector. Interestingly, the sparsity of the true parameter can be inferred from that of the above limiting parameter. Moreover, each component of the above (nonsparse) estimator is shown to be asymptotically normal with a variance that can be consistently estimated even under model misspecifications. In some cases, this asymptotic distribution leads to valid statistical inference procedures, whose empirical performances are illustrated through numerical examples. |
doi_str_mv | 10.1111/sjos.12543 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561397283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561397283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3373-920bf1ac9a94692e45e09f2e176a32727338d5a6c327888dfe268db3477ef2293</originalsourceid><addsrcrecordid>eNp9kM1KAzEQx4MoWKsXnyDgTdiaj_1IjlLUKgUPVa8h3Z3UlO2mZrpobz6Cz-iTuOt6di7DwG-G-f8IOedswru6wnXACRdZKg_IiKd5keg014dkxCSTSa60OiYniGvGeJ5yNSIvM796_f78qvwGGvShsTWNYdnijvrGQYSmBOpCpNPwQSOsImBP0U2ooEbaom9WtALc2ojeeajo3CKGU3LkbI1w9tfH5Pn25mk6S-aPd_fT63lSSlnIRAu2dNyW2vZvCkgzYNoJ4EVupShEIaWqMpuX3aCUqhyIXFVLmRYFOCG0HJOL4e42hrcWcGfWoY1dCDQiy7nUhVCyoy4HqowBMYIz2-g3Nu4NZ6b3Znpv5tdbB_MBfvc17P8hzeLhcTHs_AD703Fq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561397283</pqid></control><display><type>article</type><title>High‐dimensional robust inference for Cox regression models using desparsified Lasso</title><source>Wiley Journals</source><source>EBSCOhost Business Source Complete</source><creator>Kong, Shengchun ; Yu, Zhuqing ; Zhang, Xianyang ; Cheng, Guang</creator><creatorcontrib>Kong, Shengchun ; Yu, Zhuqing ; Zhang, Xianyang ; Cheng, Guang</creatorcontrib><description>We consider high‐dimensional inference for potentially misspecified Cox proportional hazard models based on low‐dimensional results by Lin and Wei (1989). A desparsified Lasso estimator is proposed based on the log partial likelihood function and shown to converge to a pseudo‐true parameter vector. Interestingly, the sparsity of the true parameter can be inferred from that of the above limiting parameter. Moreover, each component of the above (nonsparse) estimator is shown to be asymptotically normal with a variance that can be consistently estimated even under model misspecifications. In some cases, this asymptotic distribution leads to valid statistical inference procedures, whose empirical performances are illustrated through numerical examples.</description><identifier>ISSN: 0303-6898</identifier><identifier>EISSN: 1467-9469</identifier><identifier>DOI: 10.1111/sjos.12543</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Asymptotic methods ; Asymptotic properties ; Cox regression ; debiased Lasso ; high dimension ; Parameters ; partial likelihood ; Regression models ; robust inference ; Robustness (mathematics) ; Statistical analysis ; Statistical inference ; Statistical models</subject><ispartof>Scandinavian journal of statistics, 2021-09, Vol.48 (3), p.1068-1095</ispartof><rights>2021 Board of the Foundation of the Scandinavian Journal of Statistics.</rights><rights>2021 Board of the Foundation of the Scandinavian Journal of Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3373-920bf1ac9a94692e45e09f2e176a32727338d5a6c327888dfe268db3477ef2293</citedby><cites>FETCH-LOGICAL-c3373-920bf1ac9a94692e45e09f2e176a32727338d5a6c327888dfe268db3477ef2293</cites><orcidid>0000-0002-9275-5798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fsjos.12543$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fsjos.12543$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kong, Shengchun</creatorcontrib><creatorcontrib>Yu, Zhuqing</creatorcontrib><creatorcontrib>Zhang, Xianyang</creatorcontrib><creatorcontrib>Cheng, Guang</creatorcontrib><title>High‐dimensional robust inference for Cox regression models using desparsified Lasso</title><title>Scandinavian journal of statistics</title><description>We consider high‐dimensional inference for potentially misspecified Cox proportional hazard models based on low‐dimensional results by Lin and Wei (1989). A desparsified Lasso estimator is proposed based on the log partial likelihood function and shown to converge to a pseudo‐true parameter vector. Interestingly, the sparsity of the true parameter can be inferred from that of the above limiting parameter. Moreover, each component of the above (nonsparse) estimator is shown to be asymptotically normal with a variance that can be consistently estimated even under model misspecifications. In some cases, this asymptotic distribution leads to valid statistical inference procedures, whose empirical performances are illustrated through numerical examples.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Cox regression</subject><subject>debiased Lasso</subject><subject>high dimension</subject><subject>Parameters</subject><subject>partial likelihood</subject><subject>Regression models</subject><subject>robust inference</subject><subject>Robustness (mathematics)</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Statistical models</subject><issn>0303-6898</issn><issn>1467-9469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEQx4MoWKsXnyDgTdiaj_1IjlLUKgUPVa8h3Z3UlO2mZrpobz6Cz-iTuOt6di7DwG-G-f8IOedswru6wnXACRdZKg_IiKd5keg014dkxCSTSa60OiYniGvGeJ5yNSIvM796_f78qvwGGvShsTWNYdnijvrGQYSmBOpCpNPwQSOsImBP0U2ooEbaom9WtALc2ojeeajo3CKGU3LkbI1w9tfH5Pn25mk6S-aPd_fT63lSSlnIRAu2dNyW2vZvCkgzYNoJ4EVupShEIaWqMpuX3aCUqhyIXFVLmRYFOCG0HJOL4e42hrcWcGfWoY1dCDQiy7nUhVCyoy4HqowBMYIz2-g3Nu4NZ6b3Znpv5tdbB_MBfvc17P8hzeLhcTHs_AD703Fq</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Kong, Shengchun</creator><creator>Yu, Zhuqing</creator><creator>Zhang, Xianyang</creator><creator>Cheng, Guang</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9275-5798</orcidid></search><sort><creationdate>202109</creationdate><title>High‐dimensional robust inference for Cox regression models using desparsified Lasso</title><author>Kong, Shengchun ; Yu, Zhuqing ; Zhang, Xianyang ; Cheng, Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3373-920bf1ac9a94692e45e09f2e176a32727338d5a6c327888dfe268db3477ef2293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Cox regression</topic><topic>debiased Lasso</topic><topic>high dimension</topic><topic>Parameters</topic><topic>partial likelihood</topic><topic>Regression models</topic><topic>robust inference</topic><topic>Robustness (mathematics)</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Shengchun</creatorcontrib><creatorcontrib>Yu, Zhuqing</creatorcontrib><creatorcontrib>Zhang, Xianyang</creatorcontrib><creatorcontrib>Cheng, Guang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scandinavian journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Shengchun</au><au>Yu, Zhuqing</au><au>Zhang, Xianyang</au><au>Cheng, Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐dimensional robust inference for Cox regression models using desparsified Lasso</atitle><jtitle>Scandinavian journal of statistics</jtitle><date>2021-09</date><risdate>2021</risdate><volume>48</volume><issue>3</issue><spage>1068</spage><epage>1095</epage><pages>1068-1095</pages><issn>0303-6898</issn><eissn>1467-9469</eissn><abstract>We consider high‐dimensional inference for potentially misspecified Cox proportional hazard models based on low‐dimensional results by Lin and Wei (1989). A desparsified Lasso estimator is proposed based on the log partial likelihood function and shown to converge to a pseudo‐true parameter vector. Interestingly, the sparsity of the true parameter can be inferred from that of the above limiting parameter. Moreover, each component of the above (nonsparse) estimator is shown to be asymptotically normal with a variance that can be consistently estimated even under model misspecifications. In some cases, this asymptotic distribution leads to valid statistical inference procedures, whose empirical performances are illustrated through numerical examples.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/sjos.12543</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-9275-5798</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-6898 |
ispartof | Scandinavian journal of statistics, 2021-09, Vol.48 (3), p.1068-1095 |
issn | 0303-6898 1467-9469 |
language | eng |
recordid | cdi_proquest_journals_2561397283 |
source | Wiley Journals; EBSCOhost Business Source Complete |
subjects | Asymptotic methods Asymptotic properties Cox regression debiased Lasso high dimension Parameters partial likelihood Regression models robust inference Robustness (mathematics) Statistical analysis Statistical inference Statistical models |
title | High‐dimensional robust inference for Cox regression models using desparsified Lasso |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A46%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90dimensional%20robust%20inference%20for%20Cox%20regression%20models%20using%20desparsified%20Lasso&rft.jtitle=Scandinavian%20journal%20of%20statistics&rft.au=Kong,%20Shengchun&rft.date=2021-09&rft.volume=48&rft.issue=3&rft.spage=1068&rft.epage=1095&rft.pages=1068-1095&rft.issn=0303-6898&rft.eissn=1467-9469&rft_id=info:doi/10.1111/sjos.12543&rft_dat=%3Cproquest_cross%3E2561397283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561397283&rft_id=info:pmid/&rfr_iscdi=true |