High‐dimensional robust inference for Cox regression models using desparsified Lasso

We consider high‐dimensional inference for potentially misspecified Cox proportional hazard models based on low‐dimensional results by Lin and Wei (1989). A desparsified Lasso estimator is proposed based on the log partial likelihood function and shown to converge to a pseudo‐true parameter vector....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of statistics 2021-09, Vol.48 (3), p.1068-1095
Hauptverfasser: Kong, Shengchun, Yu, Zhuqing, Zhang, Xianyang, Cheng, Guang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1095
container_issue 3
container_start_page 1068
container_title Scandinavian journal of statistics
container_volume 48
creator Kong, Shengchun
Yu, Zhuqing
Zhang, Xianyang
Cheng, Guang
description We consider high‐dimensional inference for potentially misspecified Cox proportional hazard models based on low‐dimensional results by Lin and Wei (1989). A desparsified Lasso estimator is proposed based on the log partial likelihood function and shown to converge to a pseudo‐true parameter vector. Interestingly, the sparsity of the true parameter can be inferred from that of the above limiting parameter. Moreover, each component of the above (nonsparse) estimator is shown to be asymptotically normal with a variance that can be consistently estimated even under model misspecifications. In some cases, this asymptotic distribution leads to valid statistical inference procedures, whose empirical performances are illustrated through numerical examples.
doi_str_mv 10.1111/sjos.12543
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561397283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561397283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3373-920bf1ac9a94692e45e09f2e176a32727338d5a6c327888dfe268db3477ef2293</originalsourceid><addsrcrecordid>eNp9kM1KAzEQx4MoWKsXnyDgTdiaj_1IjlLUKgUPVa8h3Z3UlO2mZrpobz6Cz-iTuOt6di7DwG-G-f8IOedswru6wnXACRdZKg_IiKd5keg014dkxCSTSa60OiYniGvGeJ5yNSIvM796_f78qvwGGvShsTWNYdnijvrGQYSmBOpCpNPwQSOsImBP0U2ooEbaom9WtALc2ojeeajo3CKGU3LkbI1w9tfH5Pn25mk6S-aPd_fT63lSSlnIRAu2dNyW2vZvCkgzYNoJ4EVupShEIaWqMpuX3aCUqhyIXFVLmRYFOCG0HJOL4e42hrcWcGfWoY1dCDQiy7nUhVCyoy4HqowBMYIz2-g3Nu4NZ6b3Znpv5tdbB_MBfvc17P8hzeLhcTHs_AD703Fq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561397283</pqid></control><display><type>article</type><title>High‐dimensional robust inference for Cox regression models using desparsified Lasso</title><source>Wiley Journals</source><source>EBSCOhost Business Source Complete</source><creator>Kong, Shengchun ; Yu, Zhuqing ; Zhang, Xianyang ; Cheng, Guang</creator><creatorcontrib>Kong, Shengchun ; Yu, Zhuqing ; Zhang, Xianyang ; Cheng, Guang</creatorcontrib><description>We consider high‐dimensional inference for potentially misspecified Cox proportional hazard models based on low‐dimensional results by Lin and Wei (1989). A desparsified Lasso estimator is proposed based on the log partial likelihood function and shown to converge to a pseudo‐true parameter vector. Interestingly, the sparsity of the true parameter can be inferred from that of the above limiting parameter. Moreover, each component of the above (nonsparse) estimator is shown to be asymptotically normal with a variance that can be consistently estimated even under model misspecifications. In some cases, this asymptotic distribution leads to valid statistical inference procedures, whose empirical performances are illustrated through numerical examples.</description><identifier>ISSN: 0303-6898</identifier><identifier>EISSN: 1467-9469</identifier><identifier>DOI: 10.1111/sjos.12543</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Asymptotic methods ; Asymptotic properties ; Cox regression ; debiased Lasso ; high dimension ; Parameters ; partial likelihood ; Regression models ; robust inference ; Robustness (mathematics) ; Statistical analysis ; Statistical inference ; Statistical models</subject><ispartof>Scandinavian journal of statistics, 2021-09, Vol.48 (3), p.1068-1095</ispartof><rights>2021 Board of the Foundation of the Scandinavian Journal of Statistics.</rights><rights>2021 Board of the Foundation of the Scandinavian Journal of Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3373-920bf1ac9a94692e45e09f2e176a32727338d5a6c327888dfe268db3477ef2293</citedby><cites>FETCH-LOGICAL-c3373-920bf1ac9a94692e45e09f2e176a32727338d5a6c327888dfe268db3477ef2293</cites><orcidid>0000-0002-9275-5798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fsjos.12543$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fsjos.12543$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kong, Shengchun</creatorcontrib><creatorcontrib>Yu, Zhuqing</creatorcontrib><creatorcontrib>Zhang, Xianyang</creatorcontrib><creatorcontrib>Cheng, Guang</creatorcontrib><title>High‐dimensional robust inference for Cox regression models using desparsified Lasso</title><title>Scandinavian journal of statistics</title><description>We consider high‐dimensional inference for potentially misspecified Cox proportional hazard models based on low‐dimensional results by Lin and Wei (1989). A desparsified Lasso estimator is proposed based on the log partial likelihood function and shown to converge to a pseudo‐true parameter vector. Interestingly, the sparsity of the true parameter can be inferred from that of the above limiting parameter. Moreover, each component of the above (nonsparse) estimator is shown to be asymptotically normal with a variance that can be consistently estimated even under model misspecifications. In some cases, this asymptotic distribution leads to valid statistical inference procedures, whose empirical performances are illustrated through numerical examples.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Cox regression</subject><subject>debiased Lasso</subject><subject>high dimension</subject><subject>Parameters</subject><subject>partial likelihood</subject><subject>Regression models</subject><subject>robust inference</subject><subject>Robustness (mathematics)</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Statistical models</subject><issn>0303-6898</issn><issn>1467-9469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEQx4MoWKsXnyDgTdiaj_1IjlLUKgUPVa8h3Z3UlO2mZrpobz6Cz-iTuOt6di7DwG-G-f8IOedswru6wnXACRdZKg_IiKd5keg014dkxCSTSa60OiYniGvGeJ5yNSIvM796_f78qvwGGvShsTWNYdnijvrGQYSmBOpCpNPwQSOsImBP0U2ooEbaom9WtALc2ojeeajo3CKGU3LkbI1w9tfH5Pn25mk6S-aPd_fT63lSSlnIRAu2dNyW2vZvCkgzYNoJ4EVupShEIaWqMpuX3aCUqhyIXFVLmRYFOCG0HJOL4e42hrcWcGfWoY1dCDQiy7nUhVCyoy4HqowBMYIz2-g3Nu4NZ6b3Znpv5tdbB_MBfvc17P8hzeLhcTHs_AD703Fq</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Kong, Shengchun</creator><creator>Yu, Zhuqing</creator><creator>Zhang, Xianyang</creator><creator>Cheng, Guang</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9275-5798</orcidid></search><sort><creationdate>202109</creationdate><title>High‐dimensional robust inference for Cox regression models using desparsified Lasso</title><author>Kong, Shengchun ; Yu, Zhuqing ; Zhang, Xianyang ; Cheng, Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3373-920bf1ac9a94692e45e09f2e176a32727338d5a6c327888dfe268db3477ef2293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Cox regression</topic><topic>debiased Lasso</topic><topic>high dimension</topic><topic>Parameters</topic><topic>partial likelihood</topic><topic>Regression models</topic><topic>robust inference</topic><topic>Robustness (mathematics)</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Shengchun</creatorcontrib><creatorcontrib>Yu, Zhuqing</creatorcontrib><creatorcontrib>Zhang, Xianyang</creatorcontrib><creatorcontrib>Cheng, Guang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scandinavian journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Shengchun</au><au>Yu, Zhuqing</au><au>Zhang, Xianyang</au><au>Cheng, Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐dimensional robust inference for Cox regression models using desparsified Lasso</atitle><jtitle>Scandinavian journal of statistics</jtitle><date>2021-09</date><risdate>2021</risdate><volume>48</volume><issue>3</issue><spage>1068</spage><epage>1095</epage><pages>1068-1095</pages><issn>0303-6898</issn><eissn>1467-9469</eissn><abstract>We consider high‐dimensional inference for potentially misspecified Cox proportional hazard models based on low‐dimensional results by Lin and Wei (1989). A desparsified Lasso estimator is proposed based on the log partial likelihood function and shown to converge to a pseudo‐true parameter vector. Interestingly, the sparsity of the true parameter can be inferred from that of the above limiting parameter. Moreover, each component of the above (nonsparse) estimator is shown to be asymptotically normal with a variance that can be consistently estimated even under model misspecifications. In some cases, this asymptotic distribution leads to valid statistical inference procedures, whose empirical performances are illustrated through numerical examples.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/sjos.12543</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-9275-5798</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0303-6898
ispartof Scandinavian journal of statistics, 2021-09, Vol.48 (3), p.1068-1095
issn 0303-6898
1467-9469
language eng
recordid cdi_proquest_journals_2561397283
source Wiley Journals; EBSCOhost Business Source Complete
subjects Asymptotic methods
Asymptotic properties
Cox regression
debiased Lasso
high dimension
Parameters
partial likelihood
Regression models
robust inference
Robustness (mathematics)
Statistical analysis
Statistical inference
Statistical models
title High‐dimensional robust inference for Cox regression models using desparsified Lasso
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A46%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90dimensional%20robust%20inference%20for%20Cox%20regression%20models%20using%20desparsified%20Lasso&rft.jtitle=Scandinavian%20journal%20of%20statistics&rft.au=Kong,%20Shengchun&rft.date=2021-09&rft.volume=48&rft.issue=3&rft.spage=1068&rft.epage=1095&rft.pages=1068-1095&rft.issn=0303-6898&rft.eissn=1467-9469&rft_id=info:doi/10.1111/sjos.12543&rft_dat=%3Cproquest_cross%3E2561397283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561397283&rft_id=info:pmid/&rfr_iscdi=true