High‐dimensional robust inference for Cox regression models using desparsified Lasso
We consider high‐dimensional inference for potentially misspecified Cox proportional hazard models based on low‐dimensional results by Lin and Wei (1989). A desparsified Lasso estimator is proposed based on the log partial likelihood function and shown to converge to a pseudo‐true parameter vector....
Gespeichert in:
Veröffentlicht in: | Scandinavian journal of statistics 2021-09, Vol.48 (3), p.1068-1095 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider high‐dimensional inference for potentially misspecified Cox proportional hazard models based on low‐dimensional results by Lin and Wei (1989). A desparsified Lasso estimator is proposed based on the log partial likelihood function and shown to converge to a pseudo‐true parameter vector. Interestingly, the sparsity of the true parameter can be inferred from that of the above limiting parameter. Moreover, each component of the above (nonsparse) estimator is shown to be asymptotically normal with a variance that can be consistently estimated even under model misspecifications. In some cases, this asymptotic distribution leads to valid statistical inference procedures, whose empirical performances are illustrated through numerical examples. |
---|---|
ISSN: | 0303-6898 1467-9469 |
DOI: | 10.1111/sjos.12543 |