High‐dimensional robust inference for Cox regression models using desparsified Lasso

We consider high‐dimensional inference for potentially misspecified Cox proportional hazard models based on low‐dimensional results by Lin and Wei (1989). A desparsified Lasso estimator is proposed based on the log partial likelihood function and shown to converge to a pseudo‐true parameter vector....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of statistics 2021-09, Vol.48 (3), p.1068-1095
Hauptverfasser: Kong, Shengchun, Yu, Zhuqing, Zhang, Xianyang, Cheng, Guang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider high‐dimensional inference for potentially misspecified Cox proportional hazard models based on low‐dimensional results by Lin and Wei (1989). A desparsified Lasso estimator is proposed based on the log partial likelihood function and shown to converge to a pseudo‐true parameter vector. Interestingly, the sparsity of the true parameter can be inferred from that of the above limiting parameter. Moreover, each component of the above (nonsparse) estimator is shown to be asymptotically normal with a variance that can be consistently estimated even under model misspecifications. In some cases, this asymptotic distribution leads to valid statistical inference procedures, whose empirical performances are illustrated through numerical examples.
ISSN:0303-6898
1467-9469
DOI:10.1111/sjos.12543