A general homogenization result of spectral problem for linearized elasticity in perforated domains

The goal of this paper is to establish a general homogenization result for linearized elasticity of an eigenvalue problem defined over perforated domains, beyond the periodic setting, within the framework of the H 0 -convergence theory. Our main homogenization result states that the knowledge of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applications of Mathematics 2021-10, Vol.66 (5), p.701-724
Hauptverfasser: Ait Yahia, Mohamed Mourad Lhannafi, Haddadou, Hamid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The goal of this paper is to establish a general homogenization result for linearized elasticity of an eigenvalue problem defined over perforated domains, beyond the periodic setting, within the framework of the H 0 -convergence theory. Our main homogenization result states that the knowledge of the fourth-order tensor A 0 , the H 0 -limit of A ε , is sufficient to determine the homogenized eigenvalue problem and preserve the structure of the spectrum. This theorem is proved essentially by using Tartar’s method of test functions, and some general arguments of spectral analysis used in the literature on the homogenization of eigenvalue problems. Moreover, we give a result on a particular case of a simple eigenvalue of the homogenized problem. We conclude our work by some comments and perspectives.
ISSN:0862-7940
1572-9109
DOI:10.21136/AM.2021.0009-20