Unbounded mass radial solutions for the Keller–Segel equation in the disk

We consider the boundary value problem - Δ u + u - λ e u = 0 , u > 0 in B 1 ( 0 ) ∂ ν u = 0 on ∂ B 1 ( 0 ) , whose solutions correspond to steady states of the Keller–Segel system for chemotaxis. Here B 1 ( 0 ) is the unit disk, ν the outer normal to ∂ B 1 ( 0 ) , and λ > 0 is a parameter. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2021-10, Vol.60 (5), Article 198
Hauptverfasser: Bonheure, Denis, Casteras, Jean-Baptiste, Román, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Calculus of variations and partial differential equations
container_volume 60
creator Bonheure, Denis
Casteras, Jean-Baptiste
Román, Carlos
description We consider the boundary value problem - Δ u + u - λ e u = 0 , u > 0 in B 1 ( 0 ) ∂ ν u = 0 on ∂ B 1 ( 0 ) , whose solutions correspond to steady states of the Keller–Segel system for chemotaxis. Here B 1 ( 0 ) is the unit disk, ν the outer normal to ∂ B 1 ( 0 ) , and λ > 0 is a parameter. We show that, provided λ is sufficiently small, there exists a family of radial solutions u λ to this system which blow up at the origin and concentrate on ∂ B 1 ( 0 ) , as λ → 0 . These solutions satisfy lim λ → 0 u λ ( 0 ) | ln λ | = 0 and 0 < lim λ → 0 1 | ln λ | ∫ B 1 ( 0 ) λ e u λ ( x ) d x < ∞ , having in particular unbounded mass, as λ → 0 .
doi_str_mv 10.1007/s00526-021-02081-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561092475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561092475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-46a8747b4a998388557783994cd40db4cbfde27a733d33b938d774ee8f532b073</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyWmAPHt9geUcVNrcQAnS0ndkpKGrd2MrDxDrwhT0LaILExHJ3hfP9_pA-hSwLXBEDeJABB8wwoGQYUydQRmhDOaAaKiWM0Ac15RvNcn6KzlNYARCjKJ2i-bIvQt847vLEp4WhdbRucQtN3dWgTrkLE3ZvHc980Pn5_fr34lW-w3_V2D-C6PZxdnd7P0Ullm-QvfvcULe_vXmeP2eL54Wl2u8hKRnSX8dwqyWXBrdaKKSWElIppzUvHwRW8LCrnqbSSMcdYoZlyUnLvVSUYLUCyKboae7cx7HqfOrMOfWyHl4aKnICmXIqBoiNVxpBS9JXZxnpj44chYPbSzCjNDNLMQZpRQ4iNoTTA7crHv-p_Uj_RDW8n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561092475</pqid></control><display><type>article</type><title>Unbounded mass radial solutions for the Keller–Segel equation in the disk</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bonheure, Denis ; Casteras, Jean-Baptiste ; Román, Carlos</creator><creatorcontrib>Bonheure, Denis ; Casteras, Jean-Baptiste ; Román, Carlos</creatorcontrib><description>We consider the boundary value problem - Δ u + u - λ e u = 0 , u &gt; 0 in B 1 ( 0 ) ∂ ν u = 0 on ∂ B 1 ( 0 ) , whose solutions correspond to steady states of the Keller–Segel system for chemotaxis. Here B 1 ( 0 ) is the unit disk, ν the outer normal to ∂ B 1 ( 0 ) , and λ &gt; 0 is a parameter. We show that, provided λ is sufficiently small, there exists a family of radial solutions u λ to this system which blow up at the origin and concentrate on ∂ B 1 ( 0 ) , as λ → 0 . These solutions satisfy lim λ → 0 u λ ( 0 ) | ln λ | = 0 and 0 &lt; lim λ → 0 1 | ln λ | ∫ B 1 ( 0 ) λ e u λ ( x ) d x &lt; ∞ , having in particular unbounded mass, as λ → 0 .</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-021-02081-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Boundary value problems ; Calculus of Variations and Optimal Control; Optimization ; Control ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2021-10, Vol.60 (5), Article 198</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-46a8747b4a998388557783994cd40db4cbfde27a733d33b938d774ee8f532b073</citedby><cites>FETCH-LOGICAL-c319t-46a8747b4a998388557783994cd40db4cbfde27a733d33b938d774ee8f532b073</cites><orcidid>0000-0002-9264-8159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-021-02081-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-021-02081-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Bonheure, Denis</creatorcontrib><creatorcontrib>Casteras, Jean-Baptiste</creatorcontrib><creatorcontrib>Román, Carlos</creatorcontrib><title>Unbounded mass radial solutions for the Keller–Segel equation in the disk</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We consider the boundary value problem - Δ u + u - λ e u = 0 , u &gt; 0 in B 1 ( 0 ) ∂ ν u = 0 on ∂ B 1 ( 0 ) , whose solutions correspond to steady states of the Keller–Segel system for chemotaxis. Here B 1 ( 0 ) is the unit disk, ν the outer normal to ∂ B 1 ( 0 ) , and λ &gt; 0 is a parameter. We show that, provided λ is sufficiently small, there exists a family of radial solutions u λ to this system which blow up at the origin and concentrate on ∂ B 1 ( 0 ) , as λ → 0 . These solutions satisfy lim λ → 0 u λ ( 0 ) | ln λ | = 0 and 0 &lt; lim λ → 0 1 | ln λ | ∫ B 1 ( 0 ) λ e u λ ( x ) d x &lt; ∞ , having in particular unbounded mass, as λ → 0 .</description><subject>Analysis</subject><subject>Boundary value problems</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAkyWmAPHt9geUcVNrcQAnS0ndkpKGrd2MrDxDrwhT0LaILExHJ3hfP9_pA-hSwLXBEDeJABB8wwoGQYUydQRmhDOaAaKiWM0Ac15RvNcn6KzlNYARCjKJ2i-bIvQt847vLEp4WhdbRucQtN3dWgTrkLE3ZvHc980Pn5_fr34lW-w3_V2D-C6PZxdnd7P0Ullm-QvfvcULe_vXmeP2eL54Wl2u8hKRnSX8dwqyWXBrdaKKSWElIppzUvHwRW8LCrnqbSSMcdYoZlyUnLvVSUYLUCyKboae7cx7HqfOrMOfWyHl4aKnICmXIqBoiNVxpBS9JXZxnpj44chYPbSzCjNDNLMQZpRQ4iNoTTA7crHv-p_Uj_RDW8n</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Bonheure, Denis</creator><creator>Casteras, Jean-Baptiste</creator><creator>Román, Carlos</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-9264-8159</orcidid></search><sort><creationdate>20211001</creationdate><title>Unbounded mass radial solutions for the Keller–Segel equation in the disk</title><author>Bonheure, Denis ; Casteras, Jean-Baptiste ; Román, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-46a8747b4a998388557783994cd40db4cbfde27a733d33b938d774ee8f532b073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Boundary value problems</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonheure, Denis</creatorcontrib><creatorcontrib>Casteras, Jean-Baptiste</creatorcontrib><creatorcontrib>Román, Carlos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonheure, Denis</au><au>Casteras, Jean-Baptiste</au><au>Román, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unbounded mass radial solutions for the Keller–Segel equation in the disk</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>60</volume><issue>5</issue><artnum>198</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We consider the boundary value problem - Δ u + u - λ e u = 0 , u &gt; 0 in B 1 ( 0 ) ∂ ν u = 0 on ∂ B 1 ( 0 ) , whose solutions correspond to steady states of the Keller–Segel system for chemotaxis. Here B 1 ( 0 ) is the unit disk, ν the outer normal to ∂ B 1 ( 0 ) , and λ &gt; 0 is a parameter. We show that, provided λ is sufficiently small, there exists a family of radial solutions u λ to this system which blow up at the origin and concentrate on ∂ B 1 ( 0 ) , as λ → 0 . These solutions satisfy lim λ → 0 u λ ( 0 ) | ln λ | = 0 and 0 &lt; lim λ → 0 1 | ln λ | ∫ B 1 ( 0 ) λ e u λ ( x ) d x &lt; ∞ , having in particular unbounded mass, as λ → 0 .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-021-02081-8</doi><orcidid>https://orcid.org/0000-0002-9264-8159</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2021-10, Vol.60 (5), Article 198
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_2561092475
source SpringerLink Journals - AutoHoldings
subjects Analysis
Boundary value problems
Calculus of Variations and Optimal Control
Optimization
Control
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Systems Theory
Theoretical
title Unbounded mass radial solutions for the Keller–Segel equation in the disk
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unbounded%20mass%20radial%20solutions%20for%20the%20Keller%E2%80%93Segel%20equation%20in%20the%20disk&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Bonheure,%20Denis&rft.date=2021-10-01&rft.volume=60&rft.issue=5&rft.artnum=198&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-021-02081-8&rft_dat=%3Cproquest_cross%3E2561092475%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561092475&rft_id=info:pmid/&rfr_iscdi=true