Unbounded mass radial solutions for the Keller–Segel equation in the disk
We consider the boundary value problem - Δ u + u - λ e u = 0 , u > 0 in B 1 ( 0 ) ∂ ν u = 0 on ∂ B 1 ( 0 ) , whose solutions correspond to steady states of the Keller–Segel system for chemotaxis. Here B 1 ( 0 ) is the unit disk, ν the outer normal to ∂ B 1 ( 0 ) , and λ > 0 is a parameter. We...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2021-10, Vol.60 (5), Article 198 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the boundary value problem
-
Δ
u
+
u
-
λ
e
u
=
0
,
u
>
0
in
B
1
(
0
)
∂
ν
u
=
0
on
∂
B
1
(
0
)
,
whose solutions correspond to steady states of the Keller–Segel system for chemotaxis. Here
B
1
(
0
)
is the unit disk,
ν
the outer normal to
∂
B
1
(
0
)
, and
λ
>
0
is a parameter. We show that, provided
λ
is sufficiently small, there exists a family of radial solutions
u
λ
to this system which blow up at the origin and concentrate on
∂
B
1
(
0
)
, as
λ
→
0
. These solutions satisfy
lim
λ
→
0
u
λ
(
0
)
|
ln
λ
|
=
0
and
0
<
lim
λ
→
0
1
|
ln
λ
|
∫
B
1
(
0
)
λ
e
u
λ
(
x
)
d
x
<
∞
,
having in particular unbounded mass, as
λ
→
0
. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-021-02081-8 |