Unbounded mass radial solutions for the Keller–Segel equation in the disk

We consider the boundary value problem - Δ u + u - λ e u = 0 , u > 0 in B 1 ( 0 ) ∂ ν u = 0 on ∂ B 1 ( 0 ) , whose solutions correspond to steady states of the Keller–Segel system for chemotaxis. Here B 1 ( 0 ) is the unit disk, ν the outer normal to ∂ B 1 ( 0 ) , and λ > 0 is a parameter. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2021-10, Vol.60 (5), Article 198
Hauptverfasser: Bonheure, Denis, Casteras, Jean-Baptiste, Román, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the boundary value problem - Δ u + u - λ e u = 0 , u > 0 in B 1 ( 0 ) ∂ ν u = 0 on ∂ B 1 ( 0 ) , whose solutions correspond to steady states of the Keller–Segel system for chemotaxis. Here B 1 ( 0 ) is the unit disk, ν the outer normal to ∂ B 1 ( 0 ) , and λ > 0 is a parameter. We show that, provided λ is sufficiently small, there exists a family of radial solutions u λ to this system which blow up at the origin and concentrate on ∂ B 1 ( 0 ) , as λ → 0 . These solutions satisfy lim λ → 0 u λ ( 0 ) | ln λ | = 0 and 0 < lim λ → 0 1 | ln λ | ∫ B 1 ( 0 ) λ e u λ ( x ) d x < ∞ , having in particular unbounded mass, as λ → 0 .
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-021-02081-8