Fault isolation of analog circuit using an optimized ensemble empirical mode decomposition approach based on multi-objective optimization

This article proposed a practical approach to isolating faults in analog circuits. The contribution of this article is twofold. First, the optimized empirical mode decomposition approach is presented based on the Hellinger distance such that there is a minimum dependency between intrinsic mode funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering Journal of systems and control engineering, 2021-10, Vol.235 (9), p.1555-1570
Hauptverfasser: Moezi, Alireza, Kargar, Seyed Mohamad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article proposed a practical approach to isolating faults in analog circuits. The contribution of this article is twofold. First, the optimized empirical mode decomposition approach is presented based on the Hellinger distance such that there is a minimum dependency between intrinsic mode functions. Features with high distinction could be extracted by employing intrinsic mode functions in fault detection problem of analog benchmark circuits. Second, the non-dominated sorting genetic algorithm is employed to retain excellent features and speed up the execution, resulting in the high accuracy of fault detection and isolation. The number of features and mean squared error are selected as objective functions. The features from the data are also extracted using the fast Fourier and wavelet transforms for comparison. Finally, the support vector machine and artificial neural network are employed to isolate faults. Two circuits under test are simulated, and the output signals of the faulty and fault-free circuits are extracted by the Monte Carlo analysis. According to the obtained simulation results, the proposed method with a low-dimensional feature vector outperformed the previous methods, and the computational time has also reduced significantly.
ISSN:0959-6518
2041-3041
DOI:10.1177/09596518211020534