The π-hole revisited
It follows from the Schrödinger equation that the forces operating within molecules and molecular complexes are Coulombic, which necessarily entails both electrostatics and polarization. A common and important class of molecular complexes is due to π-holes. These are molecular regions of low electro...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2021-08, Vol.23 (31), p.16458-16468 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It follows from the Schrödinger equation that the forces operating within molecules and molecular complexes are Coulombic, which necessarily entails both electrostatics and polarization. A common and important class of molecular complexes is due to π-holes. These are molecular regions of low electronic density that are perpendicular to planar portions of the molecular frameworks. π-Holes often have positive electrostatic potentials associated with them, which result in mutually polarizing attractive forces with negative sites such as lone pairs, π electrons or anions. In many molecules, π-holes correspond to a flattening of the electronic density surface but in benzene derivatives and in polyazines the π-holes are craters above and below the rings. The interaction energies of π-hole complexes can be expressed quite well in terms of regression relationships that account for both the electrostatics and the polarization. There is a marked gradation in the interaction energies, from quite weak (about −2 kcal mol
−1
) to relatively strong (about −40 kcal mol
−1
). Gradations are also evident in the ratios of the intermolecular separations to the sums of the respective van der Waals radii and in the gradual transition of the π-hole atoms from trigonal to quasi-tetrahedral configurations. These trends are consistent with the concept that chemical interactions form a continuum, from very weak to very strong.
Two views of the computed electrostatic potential on the 0.001 au surface of 2,4,6-trifluoro-1,3,5-triazine. Red is the most positive color range, while blue is the most negative. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/d1cp02602j |