A monoidal Dold-Kan correspondence for comodules
We provide examples of inductive fibrant replacements in fibrantly generated model categories constructed as Postnikov towers. These provide new types of arguments to compute homotopy limits in model categories. We provide examples for simplicial and differential graded comodules. Our main applicati...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We provide examples of inductive fibrant replacements in fibrantly generated model categories constructed as Postnikov towers. These provide new types of arguments to compute homotopy limits in model categories. We provide examples for simplicial and differential graded comodules. Our main application is to show that simplicial comodules and connective differential graded comodules are Quillen equivalent and their derived cotensor products correspond. We deduce that the rational \(A\)-theory of a simply connected space \(X\) is equivalent to the \(K\)-theory of perfect chain complexes with a \(C_*(X; \mathbb{Q})\)-comodule structure. |
---|---|
ISSN: | 2331-8422 |