Effect of pyrene and phenanthrene in shaping bacterial communities in seagrass meadows sediments

Polycyclic aromatic hydrocarbons (PAHs), originating from anthropogenic and natural sources, are highly concerned environmental pollutants. This study investigated the impact of two model PAHs (pyrene and phenanthrene) on bacterial community succession in the seagrass meadows sediment in a lab-scale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of microbiology 2021-09, Vol.203 (7), p.4259-4272
Hauptverfasser: Ahmad, Manzoor, Ling, Juan, Zhang, Yanying, Sajjad, Wasim, Yang, Qingsong, Zhou, Weiguo, Dong, Junde
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polycyclic aromatic hydrocarbons (PAHs), originating from anthropogenic and natural sources, are highly concerned environmental pollutants. This study investigated the impact of two model PAHs (pyrene and phenanthrene) on bacterial community succession in the seagrass meadows sediment in a lab-scale microcosm. Halophila ovalis sediment slurry microcosms were established, one group was placed as a control, and the other two were treated with pyrene and phenanthrene. Bacterial community succession in response to respective PAHs was investigated by 16S rRNA amplicon sequencing. The results demonstrated that bacterial diversity decrease in each microcosm during the incubation process; however, the composition of bacterial communities in each microcosm was significantly different. Proteobacteria (37–89%), Firmicutes (9–41%), and Bacteroides (7–21%) were the predominant group at the phylum levels. Their abundance varies during the incubation process. Several previously reported hydrocarbon-degrading genera, such as Pseudomonas , Spinghobium , Sphingobacterium , Mycobacterium , Pseudoxanthomonas , Idiomarina , Stenotrophomonas , were detected in higher abundance in pyrene- and phenanthrene-treated microcosms. However, these genera were distinctly distributed in the pyrene and phenanthrene treatments, suggesting that certain bacterial groups favorably degrade different PAHs. Statistical analyses, such as ANOSIM and PERMANOVA, also revealed that significant differences existed among the treatments' bacterial consortia ( P  
ISSN:0302-8933
1432-072X
DOI:10.1007/s00203-021-02410-7