Random walks on groups and KMS states
A classical construction associates to a transient random walk on a discrete group Γ a compact Γ -space ∂ M Γ known as the Martin boundary. The resulting crossed product C ∗ -algebra C ( ∂ M Γ ) ⋊ r Γ comes equipped with a one-parameter group of automorphisms given by the Martin kernels that define...
Gespeichert in:
Veröffentlicht in: | Monatshefte für Mathematik 2021-09, Vol.196 (1), p.15-37 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A classical construction associates to a transient random walk on a discrete group
Γ
a compact
Γ
-space
∂
M
Γ
known as the Martin boundary. The resulting crossed product
C
∗
-algebra
C
(
∂
M
Γ
)
⋊
r
Γ
comes equipped with a one-parameter group of automorphisms given by the Martin kernels that define the Martin boundary. In this paper we study the KMS states for this flow and obtain a complete description when the Poisson boundary of the random walk is trivial and when
Γ
is a torsion free non-elementary hyperbolic group. We also construct examples to show that the structure of the KMS states can be more complicated beyond these cases. |
---|---|
ISSN: | 0026-9255 1436-5081 |
DOI: | 10.1007/s00605-021-01573-1 |