Random walks on groups and KMS states

A classical construction associates to a transient random walk on a discrete group Γ a compact Γ -space ∂ M Γ known as the Martin boundary. The resulting crossed product C ∗ -algebra C ( ∂ M Γ ) ⋊ r Γ comes equipped with a one-parameter group of automorphisms given by the Martin kernels that define...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monatshefte für Mathematik 2021-09, Vol.196 (1), p.15-37
Hauptverfasser: Christensen, Johannes, Thomsen, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A classical construction associates to a transient random walk on a discrete group Γ a compact Γ -space ∂ M Γ known as the Martin boundary. The resulting crossed product C ∗ -algebra C ( ∂ M Γ ) ⋊ r Γ comes equipped with a one-parameter group of automorphisms given by the Martin kernels that define the Martin boundary. In this paper we study the KMS states for this flow and obtain a complete description when the Poisson boundary of the random walk is trivial and when Γ is a torsion free non-elementary hyperbolic group. We also construct examples to show that the structure of the KMS states can be more complicated beyond these cases.
ISSN:0026-9255
1436-5081
DOI:10.1007/s00605-021-01573-1