NON-SYMPLECTIC INVOLUTIONS ON MANIFOLDS OF -TYPE

We study irreducible holomorphic symplectic manifolds deformation equivalent to Hilbert schemes of points on a $K3$ surface and admitting a non-symplectic involution. We classify the possible discriminant quadratic forms of the invariant and coinvariant lattice for the action of the involution on co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nagoya mathematical journal 2021-09, Vol.243, p.278-302
Hauptverfasser: CAMERE, CHIARA, CATTANEO, ALBERTO, CATTANEO, ANDREA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study irreducible holomorphic symplectic manifolds deformation equivalent to Hilbert schemes of points on a $K3$ surface and admitting a non-symplectic involution. We classify the possible discriminant quadratic forms of the invariant and coinvariant lattice for the action of the involution on cohomology and explicitly describe the lattices in the cases where the invariant lattice has small rank. We also give a modular description of all $d$ -dimensional families of manifolds of $K3^{[n]}$ -type with a non-symplectic involution for $d\geqslant 19$ and $n\leqslant 5$ and provide examples arising as moduli spaces of twisted sheaves on a $K3$ surface.
ISSN:0027-7630
2152-6842
DOI:10.1017/nmj.2019.43