Highly improved hydrogen storage capacity and kinetics of the nanocrystalline and amorphous PrMg12-type alloys by mechanical milling

Nanocrystalline and amorphous PrMg11Ni + x wt.% Ni (x = 100, 200) alloys were synthesized by mechanical milling. Effects of Ni content and milling duration on the structures, hydrogen storage capacity and kinetics of the as-milled alloys were investigated systematically. The structures were characte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2017-01, Vol.52 (1)
Hauptverfasser: Zhang, Y H, Shang, H W, Li, Y Q, Yuan, Z M, Yang, T, Zhao, D L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanocrystalline and amorphous PrMg11Ni + x wt.% Ni (x = 100, 200) alloys were synthesized by mechanical milling. Effects of Ni content and milling duration on the structures, hydrogen storage capacity and kinetics of the as-milled alloys were investigated systematically. The structures were characterized by XRD and HRTEM. The hydrogen desorption activation energy was calculated by using Kissinger method. The results show that increasing Ni content dramatically improves the electrochemical discharge capacity of the as-milled alloys. Furthermore, the variation of milling time has a significant impact on the kinetics of the alloys. As the milling time increased, the high-rate discharge ability (HRD), gaseous hydrogen absorption capacity and hydrogenation rate increased at first but decreased finally, while the dehydrogenation rate always increased.
ISSN:1755-1307
1755-1315
DOI:10.1088/1742-6596/52/1/012004