Inverse polynomials of numerical semigroup rings

Let H = be a numerical semigroup generated by e elements. Let k[H]= k[x_1, ... , x_e]/I_H = S/I_H be the semigroup ring of H over k. We define inverse polynomial J_{H,h} for h in H and express the defining ideal of I_H using Ann_S (J_{H,h}). In particular, if k[H] is Gorenstein the defining ideal o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-08
Hauptverfasser: Eto, Kazufumi, Watanabe, Kei-ichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let H = be a numerical semigroup generated by e elements. Let k[H]= k[x_1, ... , x_e]/I_H = S/I_H be the semigroup ring of H over k. We define inverse polynomial J_{H,h} for h in H and express the defining ideal of I_H using Ann_S (J_{H,h}). In particular, if k[H] is Gorenstein the defining ideal of I_H + (t^h) is Ann_S (J_{H, F(H)+h}), where F(H) is the Frobenius number of H ( = a(k[H]), the a -invariant of k[H]). We apply this to (1) evaluate number of generators of I_H, (2) characterize if k[H] is almost Gorenstein (H is almost symmetric), (3) characterize symmetric semigroups of small multiplicity. Also We give a new proof of Bresinsky's Theorem on Gorenstein semigroup rings of codimension 3 using inverse polynpmial.
ISSN:2331-8422