Inverse polynomials of numerical semigroup rings
Let H = be a numerical semigroup generated by e elements. Let k[H]= k[x_1, ... , x_e]/I_H = S/I_H be the semigroup ring of H over k. We define inverse polynomial J_{H,h} for h in H and express the defining ideal of I_H using Ann_S (J_{H,h}). In particular, if k[H] is Gorenstein the defining ideal o...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let H = be a numerical semigroup generated by e elements. Let k[H]= k[x_1, ... , x_e]/I_H = S/I_H be the semigroup ring of H over k. We define inverse polynomial J_{H,h} for h in H and express the defining ideal of I_H using Ann_S (J_{H,h}). In particular, if k[H] is Gorenstein the defining ideal of I_H + (t^h) is Ann_S (J_{H, F(H)+h}), where F(H) is the Frobenius number of H ( = a(k[H]), the a -invariant of k[H]). We apply this to (1) evaluate number of generators of I_H, (2) characterize if k[H] is almost Gorenstein (H is almost symmetric), (3) characterize symmetric semigroups of small multiplicity. Also We give a new proof of Bresinsky's Theorem on Gorenstein semigroup rings of codimension 3 using inverse polynpmial. |
---|---|
ISSN: | 2331-8422 |