Distribution-Transformed Network for Impulse Noise Removal
This work aims to explore the restoration of images corrupted by impulse noise via distribution-transformed network (DTN), which utilizes convolutional neural network to learn pixel-distribution features from noisy images. Compared with the traditional median-based algorithms, it avoids the complica...
Gespeichert in:
Veröffentlicht in: | Shanghai jiao tong da xue xue bao. Yi xue ban 2021-08, Vol.26 (4), p.543 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work aims to explore the restoration of images corrupted by impulse noise via distribution-transformed network (DTN), which utilizes convolutional neural network to learn pixel-distribution features from noisy images. Compared with the traditional median-based algorithms, it avoids the complicated pre-processing procedure and directly tackles the original image. Additionally, different from the traditional methods utilizing the spatial neighbor information around the pixels or patches and optimizing in an iterative manner, this work turns to capture the pixel-level distribution information by means of wide and transformed network learning. DTN fits the distribution at pixel-level with larger receptions and more channels. Furthermore, DTN utilities a residual block without batch normalization layer to generate a good estimate. In terms of edge preservation and noise suppression, the proposed DTN consistently achieves significantly superior performance than current state-of-the-art methods, particularly at |
---|---|
ISSN: | 1674-8115 |