Theoretical simulation of temperature distribution in a gun barrel based on the DPL model
In this paper, an exact closed form solution is introduced for the heat conduction equation in cylindrical coordinates under consecutive inner time dependent surface heat flux by both the Fourier and dual-phase-lag (DPL) models. The solution is used to calculate the temperature distribution in a gun...
Gespeichert in:
Veröffentlicht in: | Journal of Theoretical and Applied Mechanics (Warsaw) 2019-01, Vol.57 (3), p.685-696 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, an exact closed form solution is introduced for the heat conduction equation in cylindrical coordinates under consecutive inner time dependent surface heat flux by both the Fourier and dual-phase-lag (DPL) models. The solution is used to calculate the temperature distribution in a gun barrel subjected to single and consecutive shoots, and the results are compared with literature. The parametrical study is done using the analytical solution to show the effect of shooting frequency which leads to different heat power from each fire shoot and temperature distribution. The result shows good ability of analytical solution for estimation of temperature distribution in the gun barrel, especially under consecutive shoots in which unexpected incidents such as barrel melting is so probable. The closed form solution can be applied for verification of other numerical works in this area. |
---|---|
ISSN: | 1429-2955 2543-6309 |
DOI: | 10.15632/jtam-pl/110012 |