Twitter Sentimental Analysis based on Ordinal Regression

For associations and people with a profound social, political, or monetary Sinterest in keeping up and fortifying their clout and notoriety, Twitter has become a goldmine. Sentiment analysis is the way toward characterizing and classifying the considerations and sentiments communicated in a source r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-08, Vol.1979 (1), p.12069
Hauptverfasser: Nennuri, Rajashekar, Geetha Yadav, M, Sai Vahini, Y, Prabhas, Goda Sairam, Rajashree, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For associations and people with a profound social, political, or monetary Sinterest in keeping up and fortifying their clout and notoriety, Twitter has become a goldmine. Sentiment analysis is the way toward characterizing and classifying the considerations and sentiments communicated in a source record. By performing this assessment investigation in a meticulous space, it is feasible to decide the force of area data on notion order. For feeling examination order, the proposed system utilizes the calculations Support Vector Regression (SVR), Decision Trees (DTs), and Random Forest (RF). The real execution of this structure depends on a twitter dataset unveiled by the NLTK corpora devices. The proposed approach will precisely identify ordinal relapse utilizing AI procedures.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1979/1/012069