The Differential Spectrum of the Power Mapping \(x^{p^n-3}\)

Let \(n\) be a positive integer and \(p\) a prime. The power mapping \(x^{p^n-3}\) over \(\mathbb{F}_{p^n}\) has desirable differential properties, and its differential spectra for \(p=2,\,3\) have been determined. In this paper, for any odd prime \(p\), by investigating certain quadratic character...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-08
Hauptverfasser: Haode Yan, Xia, Yongbo, Li, Chunlei, Helleseth, Tor, Xiong, Maosheng, Luo, Jinquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(n\) be a positive integer and \(p\) a prime. The power mapping \(x^{p^n-3}\) over \(\mathbb{F}_{p^n}\) has desirable differential properties, and its differential spectra for \(p=2,\,3\) have been determined. In this paper, for any odd prime \(p\), by investigating certain quadratic character sums and some equations over \(\mathbb{F}_{p^n}\), we determine the differential spectrum of \(x^{p^n-3}\) with a unified approach. The obtained result shows that for any given odd prime \(p\), the differential spectrum can be expressed explicitly in terms of \(n\). Compared with previous results, a special elliptic curve over \(\mathbb{F}_{p}\) plays an important role in our computation for the general case \(p \ge 5\).
ISSN:2331-8422