Sample-efficient learning of interacting quantum systems
Learning the Hamiltonian that describes interactions in a quantum system is an important task in both condensed-matter physics and the verification of quantum technologies. Its classical analogue arises as a central problem in machine learning known as learning Boltzmann machines. Previously, the be...
Gespeichert in:
Veröffentlicht in: | Nature physics 2021-08, Vol.17 (8), p.931-935 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 935 |
---|---|
container_issue | 8 |
container_start_page | 931 |
container_title | Nature physics |
container_volume | 17 |
creator | Anshu, Anurag Arunachalam, Srinivasan Kuwahara, Tomotaka Soleimanifar, Mehdi |
description | Learning the Hamiltonian that describes interactions in a quantum system is an important task in both condensed-matter physics and the verification of quantum technologies. Its classical analogue arises as a central problem in machine learning known as learning Boltzmann machines. Previously, the best known methods for quantum Hamiltonian learning with provable performance guarantees required a number of measurements that scaled exponentially with the number of particles. Here we prove that only a polynomial number of local measurements on the thermal state of a quantum system are necessary and sufficient for accurately learning its Hamiltonian. We achieve this by establishing that the absolute value of the finite-temperature free energy of quantum many-body systems is strongly convex with respect to the interaction coefficients. The framework introduced in our work provides a theoretical foundation for applying machine learning techniques to quantum Hamiltonian learning, achieving a long-sought goal in quantum statistical learning.
Learning the Hamiltonian of a complex many-body system is hard, but now there is proof that it can be done in a way where the number of required measurements scales as a polynomial of the number of particles. |
doi_str_mv | 10.1038/s41567-021-01232-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2559539747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559539747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5892151ceb9b15e27126832b998249fb03a34b8fcdac7982e027782596ce0ede3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwBZgiMRt8dhzbI6qAIlViAGbLcS9VqsZpbWfotyclCDam-6P33ul-hNwCuwcm9EMqQVaKMg6UARecsjMyA1VKyksN57-9EpfkKqUtYyWvQMyIfnfdfocUm6b1LYZc7NDF0IZN0TdFGzJG5_NpPAwu5KEr0jFl7NI1uWjcLuHNT52Tz-enj8WSrt5eXhePK-oFmEylNhwkeKxNDRK5Al5pwWtjNC9NUzPhRFnrxq-dV-MOGVdKc2kqjwzXKObkbsrdx_4wYMp22w8xjCctl9JIYdT41ZzwSeVjn1LExu5j27l4tMDsiZCdCNmRkP0mZNloEpMpjeKwwfgX_Y_rC_zpaBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559539747</pqid></control><display><type>article</type><title>Sample-efficient learning of interacting quantum systems</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Anshu, Anurag ; Arunachalam, Srinivasan ; Kuwahara, Tomotaka ; Soleimanifar, Mehdi</creator><creatorcontrib>Anshu, Anurag ; Arunachalam, Srinivasan ; Kuwahara, Tomotaka ; Soleimanifar, Mehdi</creatorcontrib><description>Learning the Hamiltonian that describes interactions in a quantum system is an important task in both condensed-matter physics and the verification of quantum technologies. Its classical analogue arises as a central problem in machine learning known as learning Boltzmann machines. Previously, the best known methods for quantum Hamiltonian learning with provable performance guarantees required a number of measurements that scaled exponentially with the number of particles. Here we prove that only a polynomial number of local measurements on the thermal state of a quantum system are necessary and sufficient for accurately learning its Hamiltonian. We achieve this by establishing that the absolute value of the finite-temperature free energy of quantum many-body systems is strongly convex with respect to the interaction coefficients. The framework introduced in our work provides a theoretical foundation for applying machine learning techniques to quantum Hamiltonian learning, achieving a long-sought goal in quantum statistical learning.
Learning the Hamiltonian of a complex many-body system is hard, but now there is proof that it can be done in a way where the number of required measurements scales as a polynomial of the number of particles.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-021-01232-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119 ; 639/766/259 ; 639/766/483/481 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Free energy ; Machine learning ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Polynomials ; Quantum statistics ; Quantum theory ; Theoretical</subject><ispartof>Nature physics, 2021-08, Vol.17 (8), p.931-935</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5892151ceb9b15e27126832b998249fb03a34b8fcdac7982e027782596ce0ede3</citedby><cites>FETCH-LOGICAL-c319t-5892151ceb9b15e27126832b998249fb03a34b8fcdac7982e027782596ce0ede3</cites><orcidid>0000-0002-6113-0111 ; 0000-0002-3859-9309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-021-01232-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-021-01232-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Anshu, Anurag</creatorcontrib><creatorcontrib>Arunachalam, Srinivasan</creatorcontrib><creatorcontrib>Kuwahara, Tomotaka</creatorcontrib><creatorcontrib>Soleimanifar, Mehdi</creatorcontrib><title>Sample-efficient learning of interacting quantum systems</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Learning the Hamiltonian that describes interactions in a quantum system is an important task in both condensed-matter physics and the verification of quantum technologies. Its classical analogue arises as a central problem in machine learning known as learning Boltzmann machines. Previously, the best known methods for quantum Hamiltonian learning with provable performance guarantees required a number of measurements that scaled exponentially with the number of particles. Here we prove that only a polynomial number of local measurements on the thermal state of a quantum system are necessary and sufficient for accurately learning its Hamiltonian. We achieve this by establishing that the absolute value of the finite-temperature free energy of quantum many-body systems is strongly convex with respect to the interaction coefficients. The framework introduced in our work provides a theoretical foundation for applying machine learning techniques to quantum Hamiltonian learning, achieving a long-sought goal in quantum statistical learning.
Learning the Hamiltonian of a complex many-body system is hard, but now there is proof that it can be done in a way where the number of required measurements scales as a polynomial of the number of particles.</description><subject>639/766/119</subject><subject>639/766/259</subject><subject>639/766/483/481</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Free energy</subject><subject>Machine learning</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polynomials</subject><subject>Quantum statistics</subject><subject>Quantum theory</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD9PwzAQxS0EEqXwBZgiMRt8dhzbI6qAIlViAGbLcS9VqsZpbWfotyclCDam-6P33ul-hNwCuwcm9EMqQVaKMg6UARecsjMyA1VKyksN57-9EpfkKqUtYyWvQMyIfnfdfocUm6b1LYZc7NDF0IZN0TdFGzJG5_NpPAwu5KEr0jFl7NI1uWjcLuHNT52Tz-enj8WSrt5eXhePK-oFmEylNhwkeKxNDRK5Al5pwWtjNC9NUzPhRFnrxq-dV-MOGVdKc2kqjwzXKObkbsrdx_4wYMp22w8xjCctl9JIYdT41ZzwSeVjn1LExu5j27l4tMDsiZCdCNmRkP0mZNloEpMpjeKwwfgX_Y_rC_zpaBA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Anshu, Anurag</creator><creator>Arunachalam, Srinivasan</creator><creator>Kuwahara, Tomotaka</creator><creator>Soleimanifar, Mehdi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6113-0111</orcidid><orcidid>https://orcid.org/0000-0002-3859-9309</orcidid></search><sort><creationdate>20210801</creationdate><title>Sample-efficient learning of interacting quantum systems</title><author>Anshu, Anurag ; Arunachalam, Srinivasan ; Kuwahara, Tomotaka ; Soleimanifar, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5892151ceb9b15e27126832b998249fb03a34b8fcdac7982e027782596ce0ede3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/766/119</topic><topic>639/766/259</topic><topic>639/766/483/481</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Free energy</topic><topic>Machine learning</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polynomials</topic><topic>Quantum statistics</topic><topic>Quantum theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anshu, Anurag</creatorcontrib><creatorcontrib>Arunachalam, Srinivasan</creatorcontrib><creatorcontrib>Kuwahara, Tomotaka</creatorcontrib><creatorcontrib>Soleimanifar, Mehdi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anshu, Anurag</au><au>Arunachalam, Srinivasan</au><au>Kuwahara, Tomotaka</au><au>Soleimanifar, Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sample-efficient learning of interacting quantum systems</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>17</volume><issue>8</issue><spage>931</spage><epage>935</epage><pages>931-935</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Learning the Hamiltonian that describes interactions in a quantum system is an important task in both condensed-matter physics and the verification of quantum technologies. Its classical analogue arises as a central problem in machine learning known as learning Boltzmann machines. Previously, the best known methods for quantum Hamiltonian learning with provable performance guarantees required a number of measurements that scaled exponentially with the number of particles. Here we prove that only a polynomial number of local measurements on the thermal state of a quantum system are necessary and sufficient for accurately learning its Hamiltonian. We achieve this by establishing that the absolute value of the finite-temperature free energy of quantum many-body systems is strongly convex with respect to the interaction coefficients. The framework introduced in our work provides a theoretical foundation for applying machine learning techniques to quantum Hamiltonian learning, achieving a long-sought goal in quantum statistical learning.
Learning the Hamiltonian of a complex many-body system is hard, but now there is proof that it can be done in a way where the number of required measurements scales as a polynomial of the number of particles.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-021-01232-0</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6113-0111</orcidid><orcidid>https://orcid.org/0000-0002-3859-9309</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2021-08, Vol.17 (8), p.931-935 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_2559539747 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/766/119 639/766/259 639/766/483/481 Atomic Classical and Continuum Physics Complex Systems Condensed Matter Physics Free energy Machine learning Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Physics and Astronomy Polynomials Quantum statistics Quantum theory Theoretical |
title | Sample-efficient learning of interacting quantum systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sample-efficient%20learning%20of%20interacting%20quantum%20systems&rft.jtitle=Nature%20physics&rft.au=Anshu,%20Anurag&rft.date=2021-08-01&rft.volume=17&rft.issue=8&rft.spage=931&rft.epage=935&rft.pages=931-935&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-021-01232-0&rft_dat=%3Cproquest_cross%3E2559539747%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559539747&rft_id=info:pmid/&rfr_iscdi=true |