Sample-efficient learning of interacting quantum systems

Learning the Hamiltonian that describes interactions in a quantum system is an important task in both condensed-matter physics and the verification of quantum technologies. Its classical analogue arises as a central problem in machine learning known as learning Boltzmann machines. Previously, the be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2021-08, Vol.17 (8), p.931-935
Hauptverfasser: Anshu, Anurag, Arunachalam, Srinivasan, Kuwahara, Tomotaka, Soleimanifar, Mehdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 935
container_issue 8
container_start_page 931
container_title Nature physics
container_volume 17
creator Anshu, Anurag
Arunachalam, Srinivasan
Kuwahara, Tomotaka
Soleimanifar, Mehdi
description Learning the Hamiltonian that describes interactions in a quantum system is an important task in both condensed-matter physics and the verification of quantum technologies. Its classical analogue arises as a central problem in machine learning known as learning Boltzmann machines. Previously, the best known methods for quantum Hamiltonian learning with provable performance guarantees required a number of measurements that scaled exponentially with the number of particles. Here we prove that only a polynomial number of local measurements on the thermal state of a quantum system are necessary and sufficient for accurately learning its Hamiltonian. We achieve this by establishing that the absolute value of the finite-temperature free energy of quantum many-body systems is strongly convex with respect to the interaction coefficients. The framework introduced in our work provides a theoretical foundation for applying machine learning techniques to quantum Hamiltonian learning, achieving a long-sought goal in quantum statistical learning. Learning the Hamiltonian of a complex many-body system is hard, but now there is proof that it can be done in a way where the number of required measurements scales as a polynomial of the number of particles.
doi_str_mv 10.1038/s41567-021-01232-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2559539747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559539747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5892151ceb9b15e27126832b998249fb03a34b8fcdac7982e027782596ce0ede3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwBZgiMRt8dhzbI6qAIlViAGbLcS9VqsZpbWfotyclCDam-6P33ul-hNwCuwcm9EMqQVaKMg6UARecsjMyA1VKyksN57-9EpfkKqUtYyWvQMyIfnfdfocUm6b1LYZc7NDF0IZN0TdFGzJG5_NpPAwu5KEr0jFl7NI1uWjcLuHNT52Tz-enj8WSrt5eXhePK-oFmEylNhwkeKxNDRK5Al5pwWtjNC9NUzPhRFnrxq-dV-MOGVdKc2kqjwzXKObkbsrdx_4wYMp22w8xjCctl9JIYdT41ZzwSeVjn1LExu5j27l4tMDsiZCdCNmRkP0mZNloEpMpjeKwwfgX_Y_rC_zpaBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559539747</pqid></control><display><type>article</type><title>Sample-efficient learning of interacting quantum systems</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Anshu, Anurag ; Arunachalam, Srinivasan ; Kuwahara, Tomotaka ; Soleimanifar, Mehdi</creator><creatorcontrib>Anshu, Anurag ; Arunachalam, Srinivasan ; Kuwahara, Tomotaka ; Soleimanifar, Mehdi</creatorcontrib><description>Learning the Hamiltonian that describes interactions in a quantum system is an important task in both condensed-matter physics and the verification of quantum technologies. Its classical analogue arises as a central problem in machine learning known as learning Boltzmann machines. Previously, the best known methods for quantum Hamiltonian learning with provable performance guarantees required a number of measurements that scaled exponentially with the number of particles. Here we prove that only a polynomial number of local measurements on the thermal state of a quantum system are necessary and sufficient for accurately learning its Hamiltonian. We achieve this by establishing that the absolute value of the finite-temperature free energy of quantum many-body systems is strongly convex with respect to the interaction coefficients. The framework introduced in our work provides a theoretical foundation for applying machine learning techniques to quantum Hamiltonian learning, achieving a long-sought goal in quantum statistical learning. Learning the Hamiltonian of a complex many-body system is hard, but now there is proof that it can be done in a way where the number of required measurements scales as a polynomial of the number of particles.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-021-01232-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119 ; 639/766/259 ; 639/766/483/481 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Free energy ; Machine learning ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Polynomials ; Quantum statistics ; Quantum theory ; Theoretical</subject><ispartof>Nature physics, 2021-08, Vol.17 (8), p.931-935</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5892151ceb9b15e27126832b998249fb03a34b8fcdac7982e027782596ce0ede3</citedby><cites>FETCH-LOGICAL-c319t-5892151ceb9b15e27126832b998249fb03a34b8fcdac7982e027782596ce0ede3</cites><orcidid>0000-0002-6113-0111 ; 0000-0002-3859-9309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-021-01232-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-021-01232-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Anshu, Anurag</creatorcontrib><creatorcontrib>Arunachalam, Srinivasan</creatorcontrib><creatorcontrib>Kuwahara, Tomotaka</creatorcontrib><creatorcontrib>Soleimanifar, Mehdi</creatorcontrib><title>Sample-efficient learning of interacting quantum systems</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Learning the Hamiltonian that describes interactions in a quantum system is an important task in both condensed-matter physics and the verification of quantum technologies. Its classical analogue arises as a central problem in machine learning known as learning Boltzmann machines. Previously, the best known methods for quantum Hamiltonian learning with provable performance guarantees required a number of measurements that scaled exponentially with the number of particles. Here we prove that only a polynomial number of local measurements on the thermal state of a quantum system are necessary and sufficient for accurately learning its Hamiltonian. We achieve this by establishing that the absolute value of the finite-temperature free energy of quantum many-body systems is strongly convex with respect to the interaction coefficients. The framework introduced in our work provides a theoretical foundation for applying machine learning techniques to quantum Hamiltonian learning, achieving a long-sought goal in quantum statistical learning. Learning the Hamiltonian of a complex many-body system is hard, but now there is proof that it can be done in a way where the number of required measurements scales as a polynomial of the number of particles.</description><subject>639/766/119</subject><subject>639/766/259</subject><subject>639/766/483/481</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Free energy</subject><subject>Machine learning</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polynomials</subject><subject>Quantum statistics</subject><subject>Quantum theory</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD9PwzAQxS0EEqXwBZgiMRt8dhzbI6qAIlViAGbLcS9VqsZpbWfotyclCDam-6P33ul-hNwCuwcm9EMqQVaKMg6UARecsjMyA1VKyksN57-9EpfkKqUtYyWvQMyIfnfdfocUm6b1LYZc7NDF0IZN0TdFGzJG5_NpPAwu5KEr0jFl7NI1uWjcLuHNT52Tz-enj8WSrt5eXhePK-oFmEylNhwkeKxNDRK5Al5pwWtjNC9NUzPhRFnrxq-dV-MOGVdKc2kqjwzXKObkbsrdx_4wYMp22w8xjCctl9JIYdT41ZzwSeVjn1LExu5j27l4tMDsiZCdCNmRkP0mZNloEpMpjeKwwfgX_Y_rC_zpaBA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Anshu, Anurag</creator><creator>Arunachalam, Srinivasan</creator><creator>Kuwahara, Tomotaka</creator><creator>Soleimanifar, Mehdi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6113-0111</orcidid><orcidid>https://orcid.org/0000-0002-3859-9309</orcidid></search><sort><creationdate>20210801</creationdate><title>Sample-efficient learning of interacting quantum systems</title><author>Anshu, Anurag ; Arunachalam, Srinivasan ; Kuwahara, Tomotaka ; Soleimanifar, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5892151ceb9b15e27126832b998249fb03a34b8fcdac7982e027782596ce0ede3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/766/119</topic><topic>639/766/259</topic><topic>639/766/483/481</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Free energy</topic><topic>Machine learning</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polynomials</topic><topic>Quantum statistics</topic><topic>Quantum theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anshu, Anurag</creatorcontrib><creatorcontrib>Arunachalam, Srinivasan</creatorcontrib><creatorcontrib>Kuwahara, Tomotaka</creatorcontrib><creatorcontrib>Soleimanifar, Mehdi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anshu, Anurag</au><au>Arunachalam, Srinivasan</au><au>Kuwahara, Tomotaka</au><au>Soleimanifar, Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sample-efficient learning of interacting quantum systems</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>17</volume><issue>8</issue><spage>931</spage><epage>935</epage><pages>931-935</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Learning the Hamiltonian that describes interactions in a quantum system is an important task in both condensed-matter physics and the verification of quantum technologies. Its classical analogue arises as a central problem in machine learning known as learning Boltzmann machines. Previously, the best known methods for quantum Hamiltonian learning with provable performance guarantees required a number of measurements that scaled exponentially with the number of particles. Here we prove that only a polynomial number of local measurements on the thermal state of a quantum system are necessary and sufficient for accurately learning its Hamiltonian. We achieve this by establishing that the absolute value of the finite-temperature free energy of quantum many-body systems is strongly convex with respect to the interaction coefficients. The framework introduced in our work provides a theoretical foundation for applying machine learning techniques to quantum Hamiltonian learning, achieving a long-sought goal in quantum statistical learning. Learning the Hamiltonian of a complex many-body system is hard, but now there is proof that it can be done in a way where the number of required measurements scales as a polynomial of the number of particles.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-021-01232-0</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6113-0111</orcidid><orcidid>https://orcid.org/0000-0002-3859-9309</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2021-08, Vol.17 (8), p.931-935
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2559539747
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 639/766/119
639/766/259
639/766/483/481
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Free energy
Machine learning
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Polynomials
Quantum statistics
Quantum theory
Theoretical
title Sample-efficient learning of interacting quantum systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sample-efficient%20learning%20of%20interacting%20quantum%20systems&rft.jtitle=Nature%20physics&rft.au=Anshu,%20Anurag&rft.date=2021-08-01&rft.volume=17&rft.issue=8&rft.spage=931&rft.epage=935&rft.pages=931-935&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-021-01232-0&rft_dat=%3Cproquest_cross%3E2559539747%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559539747&rft_id=info:pmid/&rfr_iscdi=true