Sample-efficient learning of interacting quantum systems
Learning the Hamiltonian that describes interactions in a quantum system is an important task in both condensed-matter physics and the verification of quantum technologies. Its classical analogue arises as a central problem in machine learning known as learning Boltzmann machines. Previously, the be...
Gespeichert in:
Veröffentlicht in: | Nature physics 2021-08, Vol.17 (8), p.931-935 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Learning the Hamiltonian that describes interactions in a quantum system is an important task in both condensed-matter physics and the verification of quantum technologies. Its classical analogue arises as a central problem in machine learning known as learning Boltzmann machines. Previously, the best known methods for quantum Hamiltonian learning with provable performance guarantees required a number of measurements that scaled exponentially with the number of particles. Here we prove that only a polynomial number of local measurements on the thermal state of a quantum system are necessary and sufficient for accurately learning its Hamiltonian. We achieve this by establishing that the absolute value of the finite-temperature free energy of quantum many-body systems is strongly convex with respect to the interaction coefficients. The framework introduced in our work provides a theoretical foundation for applying machine learning techniques to quantum Hamiltonian learning, achieving a long-sought goal in quantum statistical learning.
Learning the Hamiltonian of a complex many-body system is hard, but now there is proof that it can be done in a way where the number of required measurements scales as a polynomial of the number of particles. |
---|---|
ISSN: | 1745-2473 1745-2481 |
DOI: | 10.1038/s41567-021-01232-0 |