A Vulnerability Detection System Based on Fusion of Assembly Code and Source Code

Software vulnerabilities are one of the important reasons for network intrusion. It is vital to detect and fix vulnerabilities in a timely manner. Existing vulnerability detection methods usually rely on single code models, which may miss some vulnerabilities. This paper implements a vulnerability d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and communication networks 2021, Vol.2021, p.1-11
Hauptverfasser: Li, Xingzheng, Feng, Bingwen, Li, Guofeng, Li, Tong, He, Mingjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Software vulnerabilities are one of the important reasons for network intrusion. It is vital to detect and fix vulnerabilities in a timely manner. Existing vulnerability detection methods usually rely on single code models, which may miss some vulnerabilities. This paper implements a vulnerability detection system by combining source code and assembly code models. First, code slices are extracted from the source code and assembly code. Second, these slices are aligned by the proposed code alignment algorithm. Third, aligned code slices are converted into vector and input into a hyper fusion-based deep learning model. Experiments are carried out to verify the system. The results show that the system presents a stable and convergent detection performance.
ISSN:1939-0114
1939-0122
DOI:10.1155/2021/9997641