An improved result for Falconer’s distance set problem in even dimensions
We show that if compact set E ⊂ R d has Hausdorff dimension larger than d 2 + 1 4 , where d ≥ 4 is an even integer, then the distance set of E has positive Lebesgue measure. This improves the previously best known result towards Falconer’s distance set conjecture in even dimensions.
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2021-08, Vol.380 (3-4), p.1215-1231 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that if compact set
E
⊂
R
d
has Hausdorff dimension larger than
d
2
+
1
4
, where
d
≥
4
is an even integer, then the distance set of
E
has positive Lebesgue measure. This improves the previously best known result towards Falconer’s distance set conjecture in even dimensions. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-021-02170-1 |