Energy of sections of the Deligne–Hitchin twistor space

We study a natural functional on the space of holomorphic sections of the Deligne–Hitchin moduli space of a compact Riemann surface, generalizing the energy of equivariant harmonic maps corresponding to twistor lines. We show that the energy is the residue of the pull-back along the section of a nat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2021-08, Vol.380 (3-4), p.1169-1214
Hauptverfasser: Beck, Florian, Heller, Sebastian, Röser, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a natural functional on the space of holomorphic sections of the Deligne–Hitchin moduli space of a compact Riemann surface, generalizing the energy of equivariant harmonic maps corresponding to twistor lines. We show that the energy is the residue of the pull-back along the section of a natural meromorphic connection on the hyperholomorphic line bundle recently constructed by Hitchin. As a byproduct, we show the existence of a hyper-Kähler potentials for new components of real holomorphic sections of twistor spaces of hyper-Kähler manifolds with rotating S 1 -action. Additionally, we prove that for a certain class of real holomorphic sections of the Deligne–Hitchin moduli space, the energy functional is basically given by the Willmore energy of corresponding equivariant conformal map to the 3-sphere. As an application we use the functional to distinguish new components of real holomorphic sections of the Deligne–Hitchin moduli space from the space of twistor lines.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-020-02042-0