Energy of sections of the Deligne–Hitchin twistor space
We study a natural functional on the space of holomorphic sections of the Deligne–Hitchin moduli space of a compact Riemann surface, generalizing the energy of equivariant harmonic maps corresponding to twistor lines. We show that the energy is the residue of the pull-back along the section of a nat...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2021-08, Vol.380 (3-4), p.1169-1214 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study a natural functional on the space of holomorphic sections of the Deligne–Hitchin moduli space of a compact Riemann surface, generalizing the energy of equivariant harmonic maps corresponding to twistor lines. We show that the energy is the residue of the pull-back along the section of a natural meromorphic connection on the hyperholomorphic line bundle recently constructed by Hitchin. As a byproduct, we show the existence of a hyper-Kähler potentials for new components of real holomorphic sections of twistor spaces of hyper-Kähler manifolds with rotating
S
1
-action. Additionally, we prove that for a certain class of real holomorphic sections of the Deligne–Hitchin moduli space, the energy functional is basically given by the Willmore energy of corresponding equivariant conformal map to the 3-sphere. As an application we use the functional to distinguish new components of real holomorphic sections of the Deligne–Hitchin moduli space from the space of twistor lines. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-020-02042-0 |