Asymptotic behavior of solutions to elliptic and parabolic equations with unbounded coefficients of the second order in unbounded domains

We study an asymptotic behavior of solutions to elliptic equations of the second order in a two dimensional exterior domain. Under the assumption that the solution belongs to L q with q ∈ [ 2 , ∞ ) , we prove a pointwise asymptotic estimate of the solution at the spatial infinity in terms of the beh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2021-08, Vol.380 (3-4), p.1105-1117
Hauptverfasser: Kozono, Hideo, Terasawa, Yutaka, Wakasugi, Yuta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study an asymptotic behavior of solutions to elliptic equations of the second order in a two dimensional exterior domain. Under the assumption that the solution belongs to L q with q ∈ [ 2 , ∞ ) , we prove a pointwise asymptotic estimate of the solution at the spatial infinity in terms of the behavior of the coefficients. As a corollary, we obtain the Liouville-type theorem in the case when the coefficients may grow at the spacial infinity. We also study a corresponding parabolic problem in the n -dimensional whole space and discuss the energy identity for solutions in L q . As a corollary we show also the Liouville-type theorem for both forward and ancient solutions.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-020-02032-2