Fictitious domain models for topology optimization of time-harmonic problems

A new fictitious domain model for topology optimization of time-harmonic problems based on a wave to diffusion equation transition is proposed. By employing negative values of appropriate material coefficients, a tuneable exponential decay of the field amplitude in the fictitious domains can be obta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2021-08, Vol.64 (2), p.871-887
1. Verfasser: Jensen, Jakob S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new fictitious domain model for topology optimization of time-harmonic problems based on a wave to diffusion equation transition is proposed. By employing negative values of appropriate material coefficients, a tuneable exponential decay of the field amplitude in the fictitious domains can be obtained, whereas for the conventional model a finite field amplitude is always present. To demonstrate the applicability of the model, we consider two topology optimization problems; a volume minimization problem for acoustic topology optimization for which intuitive meaningful designs are obtained with the proposed model unlike the case with a conventional contrast model. For a structural topology optimization example, the proposed model is shown to remove problematic issues with structural artifacts found for a certain dynamic compliance minimization problem.
ISSN:1615-147X
1615-1488
DOI:10.1007/s00158-021-02898-z