Water Distribution in a Socio-Technical System: Resilience Assessment for Critical Events Causing Demand Relocation

This study presents an exploratory, historically-informed approach to assessing resilience for critical events that cause demand relocation within a water distribution system (WDS). Considering WDS as an interdependent socio-technical system, demand relocation is regarded as a critical factor that c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2021-08, Vol.13 (15), p.2062
Hauptverfasser: Logan, Kevin T., Leštáková, Michaela, Thiessen, Nadja, Engels, Jens Ivo, Pelz, Peter F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents an exploratory, historically-informed approach to assessing resilience for critical events that cause demand relocation within a water distribution system (WDS). Considering WDS as an interdependent socio-technical system, demand relocation is regarded as a critical factor that can affect resilience similarly to the more commonly analyzed component failures such as pipe leaks and pump failures. Critical events are modeled as events during which consumer nodes are evacuated within a perimeter varying in size according to a typical length scale in the studied network. The required demand drops to zero in the evacuated area, and the equivalent demand is relocated according to three sheltering schemes. Results are presented for analyzing the effect of the size of the evacuated area, the feasibility of sheltering schemes, vulnerability of particular parts of the city as well as the suitability of network nodes to accommodate relocated demand using a suitable resilience metric. The results provided by this metric are compared with those drawn from common graph-based metrics. The conclusions are critically discussed under the consideration of historical knowledge to serve as a basis for future research to refine resilience assessment of socio-technical systems.
ISSN:2073-4441
2073-4441
DOI:10.3390/w13152062