Detection and Tracking of Pedestrians Using Doppler LiDAR
Pedestrian detection and tracking is necessary for autonomous vehicles and traffic management. This paper presents a novel solution to pedestrian detection and tracking for urban scenarios based on Doppler LiDAR that records both the position and velocity of the targets. The workflow consists of two...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2021-08, Vol.13 (15), p.2952, Article 2952 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pedestrian detection and tracking is necessary for autonomous vehicles and traffic management. This paper presents a novel solution to pedestrian detection and tracking for urban scenarios based on Doppler LiDAR that records both the position and velocity of the targets. The workflow consists of two stages. In the detection stage, the input point cloud is first segmented to form clusters, frame by frame. A subsequent multiple pedestrian separation process is introduced to further segment pedestrians close to each other. While a simple speed classifier is capable of extracting most of the moving pedestrians, a supervised machine learning-based classifier is adopted to detect pedestrians with insignificant radial velocity. In the tracking stage, the pedestrian's state is estimated by a Kalman filter, which uses the speed information to estimate the pedestrian's dynamics. Based on the similarity between the predicted and detected states of pedestrians, a greedy algorithm is adopted to associate the trajectories with the detection results. The presented detection and tracking methods are tested on two data sets collected in San Francisco, California by a mobile Doppler LiDAR system. The results of the pedestrian detection demonstrate that the proposed two-step classifier can improve the detection performance, particularly for detecting pedestrians far from the sensor. For both data sets, the use of Doppler speed information improves the F1-score and the recall by 15% to 20%. The subsequent tracking from the Kalman filter can achieve 83.9-55.3% for the multiple object tracking accuracy (MOTA), where the contribution of the speed measurements is secondary and insignificant. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs13152952 |