Linear discriminant analysis for multiple functional data analysis

In multivariate data analysis, Fisher linear discriminant analysis is useful to optimally separate two classes of observations by finding a linear combination of p variables. Functional data analysis deals with the analysis of continuous functions and thus can be seen as a generalisation of multivar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics 2021-08, Vol.48 (11), p.1917-1933
1. Verfasser: Gardner-Lubbe, Sugnet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In multivariate data analysis, Fisher linear discriminant analysis is useful to optimally separate two classes of observations by finding a linear combination of p variables. Functional data analysis deals with the analysis of continuous functions and thus can be seen as a generalisation of multivariate analysis where the dimension of the analysis space p strives to infinity. Several authors propose methods to perform discriminant analysis in this infinite dimensional space. Here, the methodology is introduced to perform discriminant analysis, not on single infinite dimensional functions, but to find a linear combination of p infinite dimensional continuous functions, providing a set of continuous canonical functions which are optimally separated in the canonical space.
ISSN:0266-4763
1360-0532
DOI:10.1080/02664763.2020.1780569