Determination of Traffic Characteristics of Elastic Optical Networks Nodes with Reservation Mechanisms

With the ever-increasing demand for bandwidth, appropriate mechanisms that would provide reliable and optimum service level to designated or specified traffic classes during heavy traffic loads in networks are becoming particularly sought after. One of these mechanisms is the resource reservation me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2021-08, Vol.10 (15), p.1853
Hauptverfasser: Sobieraj, Maciej, Zwierzykowski, Piotr, Leitgeb, Erich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the ever-increasing demand for bandwidth, appropriate mechanisms that would provide reliable and optimum service level to designated or specified traffic classes during heavy traffic loads in networks are becoming particularly sought after. One of these mechanisms is the resource reservation mechanism, in which parts of the resources are available only to selected (pre-defined) services. While considering modern elastic optical networks (EONs) where advanced data transmission techniques are used, an attempt was made to develop a simulation program that would make it possible to determine the traffic characteristics of the nodes in EONs. This article discusses a simulation program that has the advantage of providing the possibility to determine the loss probability for individual service classes in the nodes of an EON where the resource reservation mechanism has been introduced. The initial assumption in the article is that a Clos optical switching network is used to construct the EON nodes. The results obtained with the simulator developed by the authors will allow the influence of the introduced reservation mechanism on the loss probability of calls of individual traffic classes that are offered to the system under consideration to be determined.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics10151853