General Degree-Eccentricity Index of Trees
For a connected graph G and a , b ∈ R , the general degree-eccentricity index is defined as DEI a , b ( G ) = ∑ v ∈ V ( G ) d G a ( v ) ecc G b ( v ) , where V ( G ) is the vertex set of G , d G ( v ) is the degree of a vertex v and ecc G ( v ) is the eccentricity of v in G . We obtain sharp upper a...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2021, Vol.44 (5), p.2753-2772 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a connected graph
G
and
a
,
b
∈
R
, the general degree-eccentricity index is defined as
DEI
a
,
b
(
G
)
=
∑
v
∈
V
(
G
)
d
G
a
(
v
)
ecc
G
b
(
v
)
, where
V
(
G
) is the vertex set of
G
,
d
G
(
v
)
is the degree of a vertex
v
and
ecc
G
(
v
)
is the eccentricity of
v
in
G
. We obtain sharp upper and lower bounds on the general degree-eccentricity index for trees of given order in combination with given matching number, independence number, domination number or bipartition. The bounds hold for
0
<
a
<
1
and
b
>
0
, or for
a
>
1
and
b
<
0
. Many bounds hold also for
a
=
1
. All the extremal graphs are presented. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-021-01086-y |