Moment estimation for censored quantile regression

In influential articles Powell (Journal of Econometrics 25(3):303-325, 1984; Journal of Econometrics 32(1):143-155, 1986) proposed optimization-based censored least absolute deviations estimator (CLAD) and general censored quantile regression estimator (CQR). It has been recognized, however, that th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric reviews 2021-10, Vol.40 (9), p.815-829
Hauptverfasser: Wang, Qian, Chen, Songnian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In influential articles Powell (Journal of Econometrics 25(3):303-325, 1984; Journal of Econometrics 32(1):143-155, 1986) proposed optimization-based censored least absolute deviations estimator (CLAD) and general censored quantile regression estimator (CQR). It has been recognized, however, that this optimization-based estimator may perform poorly in finite samples (e.g., Khan and Powell, Journal of Econometrics 103(1-2):73-110, 2001; Fitzenberger, Handbook of Statistics. Elsevier, 1996; Fitzenberger and Winker, Computational Statistics & Data Analysis 52(1):88-108, 2007; Koenker, Journal of Statistical Software 27(6), 2008). In this paper we propose a moment-based censored quantile regression estimator (MCQR). While both the CQR and MCQR estimators have the same large sample properties, our simulation results suggest certain advantage of our moment-based estimator (MCQR). In addition, the empirical likelihood methods for the uncensored model (e.g., Whang 2006 ; Otsu, Journal of Econometrics 142(1):508-538, 2008) can readily be adapted to the censored model within our method of moment estimation framework. When both censoring and endogeneity are present, we develop an instrumental variable censored quantile regression estimator (IVCQR) by combining the insights of Chernozhukov and Hansen's (Journal of Econometrics 132(2):491-525, 2006; Journal of Econometrics 142(1):379-398, 2008) instrumental variables quantile regression estimator (IVQR) and the MCQR. Simulation results indicate that the IVCQR estimator performs well.
ISSN:0747-4938
1532-4168
DOI:10.1080/07474938.2021.1889207