Improving Music Performance Assessment with Contrastive Learning

Several automatic approaches for objective music performance assessment (MPA) have been proposed in the past, however, existing systems are not yet capable of reliably predicting ratings with the same accuracy as professional judges. This study investigates contrastive learning as a potential method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-08
Hauptverfasser: Seshadri, Pavan, Lerch, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several automatic approaches for objective music performance assessment (MPA) have been proposed in the past, however, existing systems are not yet capable of reliably predicting ratings with the same accuracy as professional judges. This study investigates contrastive learning as a potential method to improve existing MPA systems. Contrastive learning is a widely used technique in representation learning to learn a structured latent space capable of separately clustering multiple classes. It has been shown to produce state of the art results for image-based classification problems. We introduce a weighted contrastive loss suitable for regression tasks applied to a convolutional neural network and show that contrastive loss results in performance gains in regression tasks for MPA. Our results show that contrastive-based methods are able to match and exceed SoTA performance for MPA regression tasks by creating better class clusters within the latent space of the neural networks.
ISSN:2331-8422