The exotic meson \(\pi_1(1600)\) with \(J^{PC} = 1^{-+}\) and its decay into \(\rho(770)\pi\)

We study the spin-exotic \(J^{PC} = 1^{-+}\) amplitude in single-diffractive dissociation of 190 GeV\(/c\) pions into \(\pi^-\pi^-\pi^+\) using a hydrogen target and confirm the \(\pi_1(1600) \to \rho(770) \pi\) amplitude, which interferes with a nonresonant \(1^{-+}\) amplitude. We demonstrate that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-01
Hauptverfasser: Anosov, V, Azevedo, C D R, Badelek, B, Balestra, F, Ball, M, Barth, J, Bernhard, J, Bodlak, M, Bradamante, F, Bressan, A, W -C Chang, Chumakov, A G, D'Ago, D, S Dalla Torre, Dasgupta, S S, O Yu Denisov, Duennweber, W, Faccioli, P, Faessler, M, Finger, M, Fischer, H, Friedrich, J M, Gautheron, F, Gorzellik, M, M Grosse Perdekamp, Grube, B, Guskov, A, Huber, S, Ivanov, A, Jary, T, Joosten, R, Ketzer, B, Khaustov, G V, Khokhlov, Yu A, Kisselev, Yu, Klein, F, Kolosov, V N, Konorov, I, Konstantinov, V F, Kotzinian, A M, Kouznetsov, O M, Koval, A, Kral, Z, Kunne, F, Kurek, K, Lavickova, K, Levorato, S, Y -S Lian, P -J Lin, Makke, N, Mallot, G K, Marianski, B, Martin, A, Matousek, J, Matsuda, T, Mattson, G, Metzger, F, Meyer, W, Mikhasenko, M, Mitrofanov, E, Miyachi, Y, Moretti, A, Naim, C, Neyret, D, Novy, J, W -D Nowak, Olshevsky, A G, Panzieri, D, Parsamyan, B, Paul, S, Pekeler, H, Pesek, M, Peshekhonov, D V, Pierre, N, Quintans, C, Riedl, C, Rudnicki, T, Ryabchikov, D I, Rychter, A, Samoylenko, V D, Sandacz, A, Sarkar, S, Savin, I A, Schmieden, H, Sinha, L, Slunecka, M, Srnka, A, Stolarski, M, Subrt, O, Sulc, M, Tomsa, J, Tosello, F, Townsend, A, Triloki, T, Uhl, S, Ventura, B, Virius, M, Zemko, M, Zhao, Y, Ziembicki, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the spin-exotic \(J^{PC} = 1^{-+}\) amplitude in single-diffractive dissociation of 190 GeV\(/c\) pions into \(\pi^-\pi^-\pi^+\) using a hydrogen target and confirm the \(\pi_1(1600) \to \rho(770) \pi\) amplitude, which interferes with a nonresonant \(1^{-+}\) amplitude. We demonstrate that conflicting conclusions from previous studies on these amplitudes can be attributed to different analysis models and different treatment of the dependence of the amplitudes on the squared four-momentum transfer and we thus reconcile their experimental findings. We study the nonresonant contributions to the \(\pi^-\pi^-\pi^+\) final state using pseudo-data generated on the basis of a Deck model. Subjecting pseudo-data and real data to the same partial-wave analysis, we find good agreement concerning the spectral shape and its dependence on the squared four-momentum transfer for the \(J^{PC} = 1^{-+}\) amplitude and also for amplitudes with other \(J^{PC}\) quantum numbers. We investigate for the first time the amplitude of the \(\pi^-\pi^+\) subsystem with \(J^{PC} = 1^{--}\) in the \(3\pi\) amplitude with \(J^{PC} = 1^{-+}\) employing the novel freed-isobar analysis scheme. We reveal this \(\pi^-\pi^+\) amplitude to be dominated by the \(\rho(770)\) for both the \(\pi_1(1600)\) and the nonresonant contribution. We determine the \(\rho(770)\) resonance parameters within the three-pion final state. These findings largely confirm the underlying assumptions for the isobar model used in all previous partial-wave analyses addressing the \(J^{PC} = 1^{-+}\) amplitude.
ISSN:2331-8422
DOI:10.48550/arxiv.2108.01744