Memory-centric neuromorphic computing for unstructured data processing

The unstructured data such as visual information, natural language, and human behaviors opens up a wide array of opportunities in the field of artificial intelligence (AI). The memory-centric neuromorphic computing (MNC) has been proposed for the efficient processing of unstructured data, bypassing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2021-09, Vol.14 (9), p.3126-3142
Hauptverfasser: Sung, Sang Hyun, Kim, Tae Jin, Shin, Hera, Namkung, Hoon, Im, Tae Hong, Wang, Hee Seung, Lee, Keon Jae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The unstructured data such as visual information, natural language, and human behaviors opens up a wide array of opportunities in the field of artificial intelligence (AI). The memory-centric neuromorphic computing (MNC) has been proposed for the efficient processing of unstructured data, bypassing the von Neumann bottleneck of current computing architecture. The development of MNC would provide massively parallel processing of unstructured data, realizing the cognitive AI in edge and wearable systems. In this review, recent advances in memory-centric neuromorphic devices are discussed in terms of emerging nonvolatile memories, volatile switches, synaptic plasticity, neuronal models, and memristive neural network.
ISSN:1998-0124
1998-0000
DOI:10.1007/s12274-021-3452-6